def test_mode1(): """ Test mode on binomial distribution """ ns = range(2, 10) ps = np.linspace(0, 1, 11) for n, p in product(ns, ps): d = binomial(n, p) yield assert_true, mode(d)[0][0] in [floor((n+1)*p), floor((n+1)*p)-1]
def test_mode2(): """ Test mode on a generic distribution """ d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1 / 8, 1 / 8, 3 / 8, 3 / 8]) modes = [np.array([2, 3]), np.array([1])] for m1, m2 in zip(mode(d), modes): assert np.allclose(m1, m2)
def test_mode1(n, p): """ Test mode on binomial distribution """ d = binomial(n, p) assert mode(d)[0][0] in [floor((n + 1) * p), floor((n + 1) * p) - 1]
def test_mode2(): d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1/8, 1/8, 3/8, 3/8]) modes = [np.array([2, 3]), np.array([1])] for m1, m2 in zip(mode(d), modes): assert_array_almost_equal(m1, m2)
def test_mode1(): ns = range(2, 10) ps = np.linspace(0, 1, 11) for n, p in product(ns, ps): d = binomial(n, p) assert(mode(d)[0][0] in [floor((n+1)*p), floor((n+1)*p)-1])
def test_mode2(): """ Test mode on a generic distribution """ d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1/8, 1/8, 3/8, 3/8]) modes = [np.array([2, 3]), np.array([1])] for m1, m2 in zip(mode(d), modes): assert np.allclose(m1, m2)
def test_mode1(n, p): """ Test mode on binomial distribution """ d = binomial(n, p) assert mode(d)[0][0] in [floor((n+1)*p), floor((n+1)*p)-1]
def test_mode2(): """ Test mode on a generic distribution """ d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1/8, 1/8, 3/8, 3/8]) modes = [np.array([2, 3]), np.array([1])] for m1, m2 in zip(mode(d), modes): yield assert_array_almost_equal, m1, m2