Ejemplo n.º 1
0
 def test_weighting_behaviour_full_usage(self):
     """
     Test that when all slots are used up that the allocation weighting
     goes to zero everywhere.
     """
     usage_vector = np.full((5, 9), 1).astype(np.float32)
     weighting = AllocationAdressing.weighting(
         tf.convert_to_tensor(usage_vector))
     expected_weighting = np.full((5, 9), 0).astype(np.float32)
     self.assertAllEqual(weighting, expected_weighting)
Ejemplo n.º 2
0
    def test_weighting_behaviour_minmax(self):
        """
        Test that we allocate based on the inverse of the usage vector.
        """
        usage_vector = tf.convert_to_tensor(
            np.random.uniform(0, 1, (8, 13)).astype(np.float32))
        weighting = AllocationAdressing.weighting(usage_vector)

        # we require that max usage gets the min weighting
        self.assertAllEqual(tf.math.argmax(usage_vector, axis=1),
                            tf.math.argmin(weighting, axis=1))
        # we require that min usage gets the max weighting
        self.assertAllEqual(tf.math.argmin(usage_vector, axis=1),
                            tf.math.argmax(weighting, axis=1))
Ejemplo n.º 3
0
    def test_weighting_calculation(self):
        """
        Test that the vectorized implementation is correct and that
        the calculation forces the weighting to sum to one.
        """
        usage_vector = np.random.uniform(0, 1, (3, 13)).astype(np.float32)
        weighting = AllocationAdressing.weighting(
            tf.convert_to_tensor(usage_vector))

        free_list = np.argsort(usage_vector, axis=1)
        expected_weighting = np.zeros((3, 13)).astype(np.float32)
        free_list_indicies = [(x, y) for x in range(3) for y in range(13)]
        for b, j in free_list_indicies:
            prod = np.prod(
                [usage_vector[b, free_list[b, i]] for i in range(j)])
            free_list_entry = free_list[b, j]
            expected_weighting[b, free_list_entry] = (
                1 - usage_vector[b, free_list_entry]) * prod

        self.assertEqual(weighting.shape, (3, 13))
        self.assertAllClose(weighting,
                            tf.convert_to_tensor(expected_weighting))
        self.assertAllClose(tf.reduce_sum(weighting, axis=1), np.ones(3), 1e-2)