lab_dict=np.load(class_dict_file).item() print(CNN_net.out_dim) DNN1_arch = {'input_dim': CNN_net.out_dim, 'fc_lay': fc_lay, 'fc_drop': fc_drop, 'fc_use_batchnorm': fc_use_batchnorm, 'fc_use_laynorm': fc_use_laynorm, 'fc_use_laynorm_inp': fc_use_laynorm_inp, 'fc_use_batchnorm_inp':fc_use_batchnorm_inp, 'fc_act': fc_act, } DNN1_net=MLP(DNN1_arch) DNN1_net.cuda() DNN2_arch = {'input_dim':fc_lay[-1] , 'fc_lay': class_lay, 'fc_drop': class_drop, 'fc_use_batchnorm': class_use_batchnorm, 'fc_use_laynorm': class_use_laynorm, 'fc_use_laynorm_inp': class_use_laynorm_inp, 'fc_use_batchnorm_inp':class_use_batchnorm_inp, 'fc_act': class_act, } DNN2_net=MLP(DNN2_arch) DNN2_net.cuda()
lab_dict = np.load(class_dict_file, allow_pickle=True).item() DNN1_arch = {'input_dim': CNN_net_out_dim, 'fc_lay': fc_lay, 'fc_drop': fc_drop, 'fc_use_batchnorm': fc_use_batchnorm, 'fc_use_laynorm': fc_use_laynorm, 'fc_use_laynorm_inp': fc_use_laynorm_inp, 'fc_use_batchnorm_inp': fc_use_batchnorm_inp, 'fc_act': fc_act, } DNN1_net = MLP(DNN1_arch) if IS_DATA_PARALLEL: DNN1_net = nn.DataParallel(DNN1_net, device_ids=DEVICE_IDS) DNN1_net.cuda(device) DNN2_arch = {'input_dim': fc_lay[-1], 'fc_lay': class_lay, 'fc_drop': class_drop, 'fc_use_batchnorm': class_use_batchnorm, 'fc_use_laynorm': class_use_laynorm, 'fc_use_laynorm_inp': class_use_laynorm_inp, 'fc_use_batchnorm_inp': class_use_batchnorm_inp, 'fc_act': class_act, } DNN2_net = MLP(DNN2_arch) if IS_DATA_PARALLEL: DNN2_net = nn.DataParallel(DNN2_net, device_ids=DEVICE_IDS) DNN2_net.cuda(device)