Ejemplo n.º 1
0
    def __init__(self, values, model=None):

        from dolang.symbolic import sanitize, stringify

        exogenous = model.symbols['exogenous']
        states = model.symbols['states']
        controls = model.symbols['controls']
        parameters = model.symbols['parameters']

        preamble = dict([(s, values[s]) for s in values.keys()
                         if s not in controls])
        equations = [values[s] for s in controls]

        variables = exogenous + states + controls + [*preamble.keys()]

        preamble_str = dict()

        for k in [*preamble.keys()]:
            v = preamble[k]
            if '(' not in k:
                vv = f'{k}(0)'
            else:
                vv = k

            preamble_str[stringify(vv)] = stringify(sanitize(v, variables))

        # let's reorder the preamble
        from dolang.triangular_solver import get_incidence, triangular_solver
        incidence = get_incidence(preamble_str)
        sol = triangular_solver(incidence)
        kk = [*preamble_str.keys()]
        preamble_str = dict([(kk[k], preamble_str[kk[k]]) for k in sol])

        equations = [
            dolang.symbolic.sanitize(eq, variables) for eq in equations
        ]
        equations_strings = [
            dolang.stringify(eq, variables) for eq in equations
        ]

        args = dict([('m', [(e, 0) for e in exogenous]),
                     ('s', [(e, 0) for e in states]),
                     ('p', [e for e in parameters])])

        args = dict([(k, [stringify_symbol(e) for e in v])
                     for k, v in args.items()])

        targets = [stringify_symbol((e, 0)) for e in controls]

        eqs = dict([(targets[i], eq)
                    for i, eq in enumerate(equations_strings)])

        fff = FlatFunctionFactory(preamble_str, eqs, args, 'custom_dr')

        fun, gufun = make_method_from_factory(fff)

        self.p = model.calibration['parameters']
        self.exo_grid = model.exogenous.discretize()  # this is never used
        self.endo_grid = model.get_grid()
        self.gufun = gufun
Ejemplo n.º 2
0
    def ℰ(self):

        if self.__equilibrium__ is None:
            if self.features["with-aggregate-states"]:
                arguments_ = {
                    "e": [(e, 0) for e in self.model.symbols["exogenous"]],
                    "s": [(e, 0) for e in self.model.symbols["states"]],
                    "x": [(e, 0) for e in self.model.symbols["controls"]],
                    "m": [(e, 0) for e in self.symbols["exogenous"]],
                    "S": [(e, 0) for e in self.symbols["states"]],
                    "X": [(e, 0) for e in self.symbols["aggregate"]],
                    "m_1": [(e, 1) for e in self.symbols["exogenous"]],
                    "S_1": [(e, 1) for e in self.symbols["states"]],
                    "X_1": [(e, 1) for e in self.symbols["aggregate"]],
                    "p": self.symbols["parameters"],
                }
            else:
                arguments_ = {
                    "e": [(e, 0) for e in self.model.symbols["exogenous"]],
                    "s": [(e, 0) for e in self.model.symbols["states"]],
                    "x": [(e, 0) for e in self.model.symbols["controls"]],
                    "m": [(e, 0) for e in self.symbols["exogenous"]],
                    "X": [(e, 0) for e in self.symbols["aggregate"]],
                    "m_1": [(e, 1) for e in self.symbols["exogenous"]],
                    "X_1": [(e, 1) for e in self.symbols["aggregate"]],
                    "p": self.symbols["parameters"],
                }

            vars = sum([[e[0] for e in h]
                        for h in [*arguments_.values()][:-1]], [])

            arguments = {
                k: [dolang.symbolic.stringify_symbol(e) for e in v]
                for k, v in arguments_.items()
            }

            preamble = {}  # for now

            from dolang.symbolic import sanitize, stringify

            eqs = parse_string(self.data["equilibrium"],
                               start="equation_block")
            eqs = sanitize(eqs, variables=vars)
            eqs = stringify(eqs)
            content = {}
            for i, eq in enumerate(eqs.children):
                lhs, rhs = eq.children
                content[f"eq_{i}"] = "({1})-({0})".format(
                    str_expression(lhs), str_expression(rhs))

            fff = FlatFunctionFactory(preamble, content, arguments,
                                      "equilibrium")
            _, gufun = dolang.function_compiler.make_method_from_factory(
                fff, debug=self.debug)
            from dolang.vectorize import standard_function

            self.__equilibrium__ = standard_function(gufun, len(content))

        return self.__equilibrium__
Ejemplo n.º 3
0
    def projection(self):  # , m: 'n_e', y: "n_y", p: "n_p"):

        # TODO:
        # behaves in a very misleading way if wrong number of argument is supplied
        #  if no aggregate states, projection(m,x) (instead of projection(m,x,p)) returns zeros

        if self.__projection__ is None:
            if self.features["with-aggregate-states"]:
                arguments_ = {
                    "m": [(e, 0) for e in self.symbols["exogenous"]],
                    "S": [(e, 0) for e in self.symbols["states"]],
                    "X": [(e, 0) for e in self.symbols["aggregate"]],
                    "p": self.symbols["parameters"],
                }
            else:
                arguments_ = {
                    "m": [(e, 0) for e in self.symbols["exogenous"]],
                    "X": [(e, 0) for e in self.symbols["aggregate"]],
                    "p": self.symbols["parameters"],
                }

            vars = sum([[e[0] for e in h]
                        for h in [*arguments_.values()][:-1]], [])

            arguments = {
                k: [dolang.symbolic.stringify_symbol(e) for e in v]
                for k, v in arguments_.items()
            }

            preamble = {}  # for now

            from dolang.symbolic import sanitize, stringify

            eqs = parse_string(self.data["projection"],
                               start="assignment_block")
            eqs = sanitize(eqs, variables=vars)
            eqs = stringify(eqs)

            content = {}
            for eq in eqs.children:
                lhs, rhs = eq.children
                content[str_expression(lhs)] = str_expression(rhs)

            fff = FlatFunctionFactory(preamble, content, arguments,
                                      "equilibrium")
            _, gufun = dolang.function_compiler.make_method_from_factory(
                fff, debug=self.debug)

            from dolang.vectorize import standard_function

            self.__projection__ = standard_function(gufun, len(content))

        return self.__projection__
Ejemplo n.º 4
0
    def 𝒢(self):

        if (self.__transition__ is
                None) and self.features["with-aggregate-states"]:
            arguments_ = {
                "m_m1": [(e, -1) for e in self.symbols["exogenous"]],
                "S_m1": [(e, -1) for e in self.symbols["states"]],
                "X_m1": [(e, -1) for e in self.symbols["aggregate"]],
                "m": [(e, 0) for e in self.symbols["exogenous"]],
                "p": self.symbols["parameters"],
            }

            vars = sum([[e[0] for e in h]
                        for h in [*arguments_.values()][:-1]], [])

            arguments = {
                k: [dolang.symbolic.stringify_symbol(e) for e in v]
                for k, v in arguments_.items()
            }

            preamble = {}  # for now

            from dolang.symbolic import (
                sanitize,
                parse_string,
                str_expression,
                stringify,
            )

            eqs = parse_string(self.data["transition"],
                               start="assignment_block")
            eqs = sanitize(eqs, variables=vars)
            eqs = stringify(eqs)

            content = {}
            for i, eq in enumerate(eqs.children):
                lhs, rhs = eq.children
                content[str_expression(lhs)] = str_expression(rhs)

            from dolang.factory import FlatFunctionFactory

            fff = FlatFunctionFactory(preamble, content, arguments,
                                      "transition")

            _, gufun = dolang.function_compiler.make_method_from_factory(
                fff, debug=self.debug)

            from dolang.vectorize import standard_function

            self.__transition__ = standard_function(gufun, len(content))

        return self.__transition__
Ejemplo n.º 5
0
    def projection(self):  #, m: 'n_e', y: "n_y", p: "n_p"):

        if self.__projection__ is None:

            arguments_ = {
                # 'e': [(e,0) for e in self.model.symbols['exogenous']],
                # 's': [(e,0) for e in self.model.symbols['states']],
                # 'x': [(e,0) for e in self.model.symbols['controls']],
                'm': [(e, 0) for e in self.symbols['exogenous']],
                'y': [(e, 0) for e in self.symbols['aggregate']],
                'p': self.symbols['parameters']
            }

            vars = sum([[e[0] for e in h]
                        for h in [*arguments_.values()][:-1]], [])

            arguments = {
                k: [dolang.symbolic.stringify_symbol(e) for e in v]
                for k, v in arguments_.items()
            }

            preamble = {}  # for now

            projdefs = self.data.get('projection', {})
            pkeys = [*projdefs.keys()]
            n_p = len(pkeys)
            equations = [
                projdefs[v] for v in self.model.symbols['exogenous'][:n_p]
            ]
            equations = [
                dolang.stringify(eq, variables=vars) for eq in equations
            ]
            content = {f'{pkeys[i]}_0': eq for i, eq in enumerate(equations)}
            fff = FlatFunctionFactory(preamble, content, arguments,
                                      'equilibrium')
            fun = dolang.function_compiler.make_method_from_factory(
                fff, debug=self.debug)
            from dolang.vectorize import standard_function
            self.__projection__ = standard_function(fun[1], len(equations))

        return self.__projection__
Ejemplo n.º 6
0
    def ℰ(self):

        if self.__equilibrium__ is None:

            arguments_ = {
                'e': [(e, 0) for e in self.model.symbols['exogenous']],
                's': [(e, 0) for e in self.model.symbols['states']],
                'x': [(e, 0) for e in self.model.symbols['controls']],
                'm': [(e, 0) for e in self.symbols['exogenous']],
                'y': [(e, 0) for e in self.symbols['aggregate']],
                'p': self.symbols['parameters']
            }

            vars = sum([[e[0] for e in h]
                        for h in [*arguments_.values()][:-1]], [])

            arguments = {
                k: [dolang.symbolic.stringify_symbol(e) for e in v]
                for k, v in arguments_.items()
            }

            preamble = {}  # for now

            equations = [
                ("{}-({})".format(*(str(eq).split('='))) if '=' in eq else eq)
                for eq in self.data['equilibrium']
            ]
            equations = [
                dolang.stringify(eq, variables=vars) for eq in equations
            ]
            content = {f'eq_{i}': eq for i, eq in enumerate(equations)}
            fff = FlatFunctionFactory(preamble, content, arguments,
                                      'equilibrium')
            fun = dolang.function_compiler.make_method_from_factory(
                fff, debug=self.debug)
            from dolang.vectorize import standard_function
            self.__equilibrium__ = standard_function(fun[1], len(equations))

        return self.__equilibrium__
def test_compiler():
    from dolang.factory import FlatFunctionFactory
    from dolang.codegen import to_source

    fff = FlatFunctionFactory(
        dict(  # preamble
            x="b+c*p1", y="(a+b)*c"),
        dict(out_1="exp(y*p1)-a*p2", out_2="x+y"),
        dict(g1=['a', 'b'], g2=['c'], g3=['p1', 'p2']),
        'testfun')

    from dolang.function_compiler import make_method_from_factory

    fun = make_method_from_factory(fff)[0]

    import numpy as np
    out = np.array([0.3, 0.1])

    fun([0.1, 0.2], [10], [0.5, 0.3], out)

    print(abs(out[0] - 4.45168907) < 1e-8)
    print(abs(out[1] - 8.2) < 1e-8)
Ejemplo n.º 8
0
def test_compiler():
    from dolang.factory import FlatFunctionFactory
    from dolang.codegen import to_source

    fff = FlatFunctionFactory(
        dict(x="b+c*p1", y="(a+b)*c"),  # preamble
        dict(out_1="exp(y*p1)-a*p2", out_2="x+y"),
        dict(g1=["a", "b"], g2=["c"], g3=["p1", "p2"]),
        "testfun",
    )

    from dolang.function_compiler import make_method_from_factory

    fun = make_method_from_factory(fff)[0]

    import numpy as np

    out = np.array([0.3, 0.1])

    fun(np.array([0.1, 0.2]), np.array([10]), np.array([0.5, 0.3]), out)

    assert abs(out[0] - 4.45168907) < 1e-8
    assert abs(out[1] - 8.2) < 1e-8
Ejemplo n.º 9
0
def get_factory(model, eq_type: str, tshift: int = 0):

    from dolo.compiler.model import decode_complementarity

    from dolo.compiler.recipes import recipes
    from dolang.symbolic import stringify, stringify_symbol

    equations = model.equations

    if eq_type == "auxiliary":
        eqs = [('{}({})'.format(s, 0)) for s in model.symbols['auxiliaries']]
        specs = {
            'eqs': [['exogenous', 0, 'm'], ['states', 0, 's'],
                    ['controls', 0, 'x'], ['parameters', 0, 'p']]
        }
    else:
        eqs = equations[eq_type]
        if eq_type in ('controls_lb', 'controls_ub'):
            specs = {
                'eqs':
                recipes['dtcc']['specs']['arbitrage']['complementarities'][
                    'left-right']
            }
        else:
            specs = recipes['dtcc']['specs'][eq_type]

    specs = shift_spec(specs, tshift=tshift)

    preamble_tshift = set([s[1] for s in specs['eqs'] if s[0] == 'states'])
    preamble_tshift = preamble_tshift.intersection(
        set([s[1] for s in specs['eqs'] if s[0] == 'controls']))

    args = []
    for sg in specs['eqs']:
        if sg[0] == 'parameters':
            args.append([s for s in model.symbols["parameters"]])
        else:
            args.append([(s, sg[1]) for s in model.symbols[sg[0]]])
    args = [[stringify_symbol(e) for e in vg] for vg in args]

    arguments = dict(zip([sg[2] for sg in specs['eqs']], args))

    # temp
    eqs = [eq.replace("==","=").replace("=","==") for eq in eqs]

    if 'target' in specs:
        sg = specs['target']
        targets = [(s, sg[1]) for s in model.symbols[sg[0]]]
        eqs = [eq.split('==')[1] for eq in eqs]
    else:
        eqs = [("({1})-({0})".format(*eq.split('==')) if '==' in eq else eq)
               for eq in eqs]
        targets = [('out{}'.format(i), 0) for i in range(len(eqs))]

    eqs = [str.strip(eq) for eq in eqs]
    eqs = [dolang.parse_string(eq) for eq in eqs]
    es = ExpressionSanitizer(model.variables)
    eqs = [es.visit(eq) for eq in eqs]

    eqs = [time_shift(eq, tshift) for eq in eqs]
    eqs = [stringify(eq) for eq in eqs]
    eqs = [dolang.to_source(eq) for eq in eqs]

    targets = [stringify_symbol(e) for e in targets]

    # sanitize defs ( should be )
    defs = dict()
    for k in model.definitions:
        if '(' not in k:
            s = "{}(0)".format(k)
            val = model.definitions[k]
            val = es.visit(dolang.parse_string(val))
            for t in preamble_tshift:
                s = stringify_symbol((k, t))
                vv = stringify(time_shift(val, t))
                defs[s] = dolang.to_source(vv)

    preamble = reorder_preamble(defs)

    eqs = dict(zip(targets, eqs))
    ff = FlatFunctionFactory(preamble, eqs, arguments, eq_type)

    return ff
Ejemplo n.º 10
0
equations_strings = [dolang.stringify(eq, variables) for eq in equations]

args = dict([('y_f', [(e, 1) for e in endo_vars]),
             ('y', [(e, 0) for e in endo_vars]),
             ('y_p', [(e, -1) for e in endo_vars]),
             ('e', [(e, 0) for e in exo_vars]),
             ('p', [e for e in parameters])])

args = dict([(k, [stringify_symbol(e) for e in v]) for k, v in args.items()])

from dolang.symbolic import stringify_symbol
from dolang.factory import FlatFunctionFactory

eqs = dict([(f"equation_{i+1}", eq) for i, eq in enumerate(equations_strings)])

fff = FlatFunctionFactory(dict(), eqs, args, 'f_dynamic')

from dolang.function_compiler import make_method_from_factory

fun, gufun = make_method_from_factory(fff, vectorize=True, debug=True)

calibration = dict()
data['modfile']['statements']

calibration = dict()
for s in data['modfile']['statements']:
    # parameters
    if s['statementName'] == 'param_init':
        n = s['name']
        v = s['value']
        calibration[n] = float(v)
Ejemplo n.º 11
0
def get_factory(model, eq_type: str, tshift: int = 0):

    from dolo.compiler.model import decode_complementarity

    from dolo.compiler.recipes import recipes
    from dolang.symbolic import stringify, stringify_symbol

    equations = model.equations

    if eq_type == "auxiliary":
        eqs = ["{}".format(s) for s in model.symbols["auxiliaries"]]
        specs = {
            "eqs": [
                ["exogenous", 0, "m"],
                ["states", 0, "s"],
                ["controls", 0, "x"],
                ["parameters", 0, "p"],
            ]
        }
    else:
        eqs = equations[eq_type]
        if eq_type in ("arbitrage_lb", "arbitrage_ub"):
            specs = {
                "eqs":
                recipes["dtcc"]["specs"]["arbitrage"]["complementarities"]
                ["left-right"]
            }
        else:
            specs = recipes["dtcc"]["specs"][eq_type]

    specs = shift_spec(specs, tshift=tshift)

    preamble_tshift = set([s[1] for s in specs["eqs"] if s[0] == "states"])
    preamble_tshift = preamble_tshift.intersection(
        set([s[1] for s in specs["eqs"] if s[0] == "controls"]))

    args = []
    for sg in specs["eqs"]:
        if sg[0] == "parameters":
            args.append([s for s in model.symbols["parameters"]])
        else:
            args.append([(s, sg[1]) for s in model.symbols[sg[0]]])
    args = [[stringify_symbol(e) for e in vg] for vg in args]

    arguments = dict(zip([sg[2] for sg in specs["eqs"]], args))

    # temp
    eqs = [eq.split("⟂")[0].strip() for eq in eqs]

    if "target" in specs:
        sg = specs["target"]
        targets = [(s, sg[1]) for s in model.symbols[sg[0]]]
        eqs = [eq.split("=")[1] for eq in eqs]
    else:
        eqs = [("({1})-({0})".format(*eq.split("=")) if "=" in eq else eq)
               for eq in eqs]
        targets = [("out{}".format(i), 0) for i in range(len(eqs))]

    eqs = [str.strip(eq) for eq in eqs]

    eqs = [dolang.parse_string(eq) for eq in eqs]
    es = Sanitizer(variables=model.variables)
    eqs = [es.transform(eq) for eq in eqs]

    eqs = [time_shift(eq, tshift) for eq in eqs]

    eqs = [stringify(eq) for eq in eqs]

    eqs = [str_expression(eq) for eq in eqs]

    targets = [stringify_symbol(e) for e in targets]

    # sanitize defs ( should be )
    defs = dict()

    for k in model.definitions:
        val = model.definitions[k]
        # val = es.transform(dolang.parse_string(val))
        for t in preamble_tshift:
            s = stringify(time_shift(k, t))
            if isinstance(val, str):
                vv = stringify(time_shift(val, t))
            else:
                vv = str(val)
            defs[s] = vv

    preamble = reorder_preamble(defs)

    eqs = dict(zip(targets, eqs))
    ff = FlatFunctionFactory(preamble, eqs, arguments, eq_type)

    return ff