Ejemplo n.º 1
0
    def updateStatistics(self):
        for curLevel in range(len(self.space4Level)):
            samples = self.y4Level[curLevel]
            self.variance4level[curLevel] = np.var(samples, 0)
            compCost = self.space4Level[curLevel].dim() ** 2 / 1000.

            # Simple for uniform meshes
#             optSamples = self.constCompCost * np.sqrt(
#                 np.sqrt(np.sqrt(np.mean(np.abs(self.variance4level[curLevel]))) / compCost))

            # Same but for general meshes
            space = self.space4Level[curLevel]
            domainArea = assemble(interpolate(Constant(1), space) * dx)
            varianceMean = Function(space)
            varianceMean.vector().set_local(np.abs(self.variance4level[curLevel]))
            varianceIntMean = np.sqrt(assemble(varianceMean * dx) / domainArea)
            optSamples = self.constCompCost * np.sqrt(np.sqrt(
                varianceIntMean / compCost))

            # Alernate from ???
#             l = curLevel + 2
#             maxL = len(self.space4Level) + 1
#             epsOptSamples = 0.1
#             optSamples = l ** (2 + 2 * epsOptSamples) * 2 ** (2 * (maxL - l))

            self.optNumSamples4Level[curLevel] = np.rint(optSamples).astype(int)
        self.compCost4lvl[-1] = sum(list(len(samples) * (space.dim() ** 2)
            for (space, samples) in zip(self.space4Level, self.y4Level)))
Ejemplo n.º 2
0
    def runCycle(self):
        # initial sampling
        print("Level {level}".format(level = 0))
        self.sampleSolutions()
        self.updateStatistics()
        self.sampleSolutions()

        meanFunction = Function(self.space4Level[0])
        meanFunction.vector().set_local(np.mean(self.y4Level[0], 0))
        self.mean4level[0] = meanFunction

        for level in range(1, self.maxLevels):
            print("Level {level}".format(level = level))
            self.addLevel()
            self.sampleSolutions()
            self.updateStatistics()
            self.sampleSolutions()

            levelFunction = Function(self.space4Level[level])
            levelFunction.vector().set_local(np.mean(self.y4Level[level], 0))
            self.mean4level.append(levelFunction)

            for curLevel in range(level):
                tempFunction = Function(self.space4Level[curLevel])
                tempFunction.vector().set_local(np.mean(self.y4Level[curLevel], 0))
                self.mean4level[level] += tempFunction