Ejemplo n.º 1
0
    def gen_vector(self,v=None):
        """
        Generate/initialize a dolfin generic vector to be compatible with the size of dof.
        """
        if v is None:
            vec = df.Vector(self.mpi_comm,self.dim) # dofs not aligned to function.vector() in parallel
#             vec = df.Function(self.V).vector()
            vec.zero()
        else:
            if type(v) in (df.Vector,df.PETScVector):
                vec = df.Vector(v)
            elif type(v) is np.ndarray:
                vec = df.Vector(self.mpi_comm,len(v))
#                 vec = df.Function(self.V).vector()
#                 vec[:]=np.array(v)
                
#                 import pydevd; pydevd.settrace()
                dofmap = self.V.dofmap()
                dof_first, dof_last = dofmap.ownership_range()
                unowned = dofmap.local_to_global_unowned()
                dofs = filter(lambda dof: dofmap.local_to_global_index(dof) not in unowned, range(dof_first,dof_last))
                vec.set_local(v[list(dofs)]); #vec.apply('insert')
            else:
                df.warning('Unknown type.')
                vec=None
        return vec
Ejemplo n.º 2
0
def filter_values(values, operator):
    """
    Remove inf's and nan's, and apply operator to each value in
    values. Return sorted array of nonzero values, and the number
    of zeroes.
    """
    values = array(values)

    # Remove infs and nans
    upper_bound = ascot_parameters["inf"]
    values = values[where(abs(values) < upper_bound)]
    if any(abs(values) > 1.e8):
        warning(
            "Some eigenvalues are larger than 1.e8. Consider checking your inner products!"
        )

    # Replace small (possibly negative numbers) by zero!
    is_nonzero = abs(values) >= ascot_parameters["eps"]
    zeros = values[abs(values) < ascot_parameters["eps"]]
    values = values[where(is_nonzero)]

    # Apply operator (sqrt) if indicated
    values = array(list(map(operator, values)))

    # Sort values
    values.sort()
    return values, sum(is_nonzero == False)
Ejemplo n.º 3
0
def collapse(x):
    """Compute an explicit matrix representation of an operator. For example,
    given a block_ mul object M=A*B, collapse(M) performs the actual matrix
    multiplication.
    """
    # Since _collapse works recursively, this method is a user-visible wrapper
    # to print timing, and to check input/output arguments.
    from time import time
    from dolfin import EpetraMatrix, info, warning
    T = time()
    res = _collapse(x)
    if getattr(res, 'transposed', False):
        # transposed matrices will normally be converted to a non-transposed
        # one by matrix multiplication or addition, but if the transpose is the
        # outermost operation then this doesn't work.
        warning('Transposed matrix returned from collapse() -- this matrix can be used for multiplications, '
                + 'but not (for example) as input to ML. Try to convert from (A*B)^T to B^T*A^T in your call.')
        from block.block_compose import block_transpose
        return block_transpose(EpetraMatrix(res.M))
    info('computed explicit matrix representation %s in %.2f s'%(str(res),time()-T))

    result = EpetraMatrix(res.M)

    # Sanity check. Cannot trust EpetraExt.Multiply always, it seems.
    from block import block_vec
    v = x.create_vec()
    block_vec([v]).randomize()
    xv = x*v
    err = (xv-result*v).norm('l2')/(xv).norm('l2')
    if (err > 1e-3):
        raise RuntimeError('collapse computed wrong result; ||(a-a\')x||/||ax|| = %g'%err)

    return result
    def update_functional(self, s):
        """
        Update the adjoint RHS associated with the functional at the end of timestep
        s.
        """

        if not isinstance(s, int) or s < 0:
            raise InvalidArgumentException("s must be a non-negative integer")

        if not isinstance(self.__functional, TimeFunctional):
            return

        a_rhs = OrderedDict()
        for f_dep in self.__functional.dependencies(s):
            if is_static_coefficient(f_dep):
                pass
            elif isinstance(f_dep, dolfin.Function):
                a_x = self.__a_map[f_dep]
                a_rhs[a_x] = self.__functional.derivative(f_dep, s)
            elif isinstance(f_dep, dolfin.Constant):
                pass
            else:
                raise DependencyException("Invalid dependency")

        self.__a_L_rhs = [None for i in xrange(len(self.__a_x))]
        for a_x in a_rhs:
            if not a_x in self.__a_keys:
                dolfin.warning("Missing functional dependency %s" % a_x.name())
            else:
                self.__a_L_rhs[self.__a_keys[a_x]] = a_rhs[a_x]

        return
Ejemplo n.º 5
0
    def update_functional(self, s):
        """
        Update the adjoint RHS associated with the functional at the end of timestep
        s.
        """

        if not isinstance(s, int) or s < 0:
            raise InvalidArgumentException("s must be a non-negative integer")

        if not isinstance(self.__functional, TimeFunctional):
            return

        a_rhs = OrderedDict()
        for f_dep in self.__functional.dependencies(s):
            if is_static_coefficient(f_dep):
                pass
            elif isinstance(f_dep, dolfin.Function):
                a_x = self.__a_map[f_dep]
                a_rhs[a_x] = self.__functional.derivative(f_dep, s)
            elif isinstance(f_dep, dolfin.Constant):
                pass
            else:
                raise DependencyException("Invalid dependency")

        self.__a_L_rhs = [None for i in range(len(self.__a_x))]
        for a_x in a_rhs:
            if not a_x in self.__a_keys:
                dolfin.warning("Missing functional dependency %s" % a_x.name())
            else:
                self.__a_L_rhs[self.__a_keys[a_x]] = a_rhs[a_x]

        return
Ejemplo n.º 6
0
    def _as_petscmat(self):
        if df.has_petsc4py():
            from petsc4py import PETSc
            mat = PETSc.Mat().createPython(df.as_backend_type(self.prior.M).mat().getSizes(), comm = self.prior.mpi_comm)
#             mat = PETSc.Mat().createPython(self.dim, comm = self.prior.mpi_comm)
            mat.setPythonContext(self)
            return df.PETScMatrix(mat)
        else:
            df.warning('Petsc4py not installed: cannot generate PETScMatrix with specified size!')
            pass
Ejemplo n.º 7
0
def copy(obj):
    """Return a deep copy of the object"""
    if hasattr(obj, 'copy'):
        return obj.copy()
    else:
        import copy
        try:
            return copy.deepcopy(obj)
        except TypeError:
            from dolfin import warning
            warning(
                "Don't know how to make a deep copy of (%d,%d), making shallow copy"
                % (i, j))
            return copy.copy(obj)
Ejemplo n.º 8
0
    def matvec(self, b):
        from time import time
        from block.block_vec import block_vec
        from dolfin import log, info, Progress
        TRACE = 13 # dolfin.TRACE

        T = time()

        # If x and initial_guess are block_vecs, some of the blocks may be
        # scalars (although they are normally converted to vectors by bc
        # application). To be sure, call allocate() on them.

        if isinstance(b, block_vec):
            # Create a shallow copy to call allocate() on, to avoid changing the caller's copy of b
            b = block_vec(len(b), b.blocks)
            b.allocate(self.A, dim=0)

        if self.initial_guess:
            # Most (all?) solvers modify x, so make a copy to avoid changing
            # the caller's copy of x
            from block.block_util import copy
            x = copy(self.initial_guess)
            if isinstance(x, block_vec):
                x.allocate(self.A, dim=1)
        else:
            x = self.A.create_vec(dim=1)
            x.zero()

        try:
            log(TRACE, self.__class__.__name__+' solve of '+str(self.A))
            if self.B != 1.0:
                log(TRACE, 'Using preconditioner: '+str(self.B))
            progress = Progress(self.name, self.maxiter)
            if self.tolerance < 0:
                tolerance = -self.tolerance
                relative = True
            else:
                tolerance = self.tolerance
                relative = False
            x = self.method(self.B, self.AR, x, b, tolerance=tolerance,
                            relativeconv=self.relativeconv, maxiter=self.maxiter,
                            progress=progress, callback=self.callback,
                            **self.kwargs)
            del progress # trigger final printout
        except Exception, e:
            from dolfin import warning
            warning("Error solving " + self.name)
            raise
Ejemplo n.º 9
0
def timestep_range(T, dt):
    """Return a matching time step range for given end time and time
    step. Note that the time step may be adjusted so that it matches
    the given end time."""

    # Compute range
    ds = dt
    n = ceil(T / dt)
    t_range = linspace(0, T, n + 1)[1:]
    dt = t_range[0]

    # Warn about changing time step
    if ds != dt:
        warning("Changing time step from %g to %g" % (ds, dt))

    return dt, t_range
Ejemplo n.º 10
0
def timestep_range(T, dt):
    """Return a matching time step range for given end time and time
    step. Note that the time step may be adjusted so that it matches
    the given end time."""
    
    # Compute range
    ds = dt
    n = ceil(T / dt)
    t_range = linspace(0, T, n + 1)[1:]
    dt = t_range[0]

    # Warn about changing time step
    if ds != dt:
        warning("Changing time step from %g to %g" % (ds, dt))

    return dt, t_range
Ejemplo n.º 11
0
 def gen_vector(self, v=None):
     """
     Generate/initialize a dolfin generic vector to be compatible with the size of dof.
     """
     if v is None:
         vec = df.Vector(self.mpi_comm, self.dim)
         vec.zero()
     else:
         if type(v) is df.Vector:
             vec = df.Vector(v)
         elif type(v) is np.ndarray:
             vec = df.Vector(self.mpi_comm, len(v))
             vec[:] = np.array(v)
         else:
             df.warning('Unknown type.')
             vec = None
     return vec
Ejemplo n.º 12
0
def XDMFTempSeries(path, V, first=0, last=None):
    '''
    Read in the temp series of functions in V from XDMF file. If V is not 
    a function space then a finite element has to be provided for constructing
    the space on the recovered mesh.
    '''
    # NOTE: in 2017.2.0 fenics only stores vertex values so CG1 functions
    # is what we go for
    _, ext = os.path.splitext(path)
    assert ext == '.xdmf'

    tree = ET.parse(path)
    domain = list(tree.getroot())[0]
    grid = list(domain)[0]

    times = []  # Only collect time stamps so that we access in right order
    h5_file = ''  # Consistency of piece as VisualisationVector ...
    for item in grid:
        _, __, time, attrib = list(item)
        time = time.attrib['Value']
        times.append(time)

        piece = list(attrib)[0]
        h5_file_, fdata = piece.text.split(':/')

        assert not h5_file or h5_file == h5_file_
        h5_file = h5_file_

    times = times[slice(first, last, None)]
    # We read visualization vector from this
    h5_file = os.path.join(os.path.dirname(os.path.abspath(path)), h5_file)

    if not isinstance(V, FunctionSpace):
        warning('Setting up P1 space on the recovered mesh')

        cell_type = V.cell()  # Dangerously assuming this is a UFL element
        mesh = read_h5_mesh(h5_file, cell_type)

        V = FunctionSpace(mesh, V)
    V = get_P1_space(V)

    functions = read_h5_function(h5_file, times, V)

    ft_pairs = zip(functions, map(float, times))

    return TempSeries(ft_pairs)
Ejemplo n.º 13
0
 def rand_aux(self, cov='I'):
     """
     Generate random vector: _v ~ N(0,_K), _K = I + Nu_r * (D_r-I_r) * Nu_r'
     """
     noise = dl.Vector()
     self.model.prior.init_vector(noise, "noise")
     hp.random.Random.normal(noise, 1., True)
     _v = self.model.model_stat.generate_vector(hp.PARAMETER)
     _v_help = dl.Vector(_v)
     self.model.whtprior.sample(noise, _v_help)
     if cov is 'I':
         _v[:] = _v_help
     elif cov is 'K':
         self.rtK(_v_help, _v)
     else:
         dl.warning('Wrong covariance specification!')
         pass
     return _v
Ejemplo n.º 14
0
    def apply(self, a):
        # Manual application of bcs
        if isinstance(a, dolfin.Matrix):
            A = a
            # Modif A: zero bc row & set diagonal to 1
            A.ident_local(self.dof_set)
            A.apply("insert")

        elif isinstance(a, dolfin.GenericVector):
            b = a
            # Modif b: entry in the bc row is taken from bc_f
            bc_values = self.bc_f.vector().array()
            b_values = b.array()
            b_values[self.dof_set] = bc_values[self.dof_set]
            b.set_local(b_values)
            b.apply("insert")

        else:
            dolfin.warning("Could not apply Point BC.")
Ejemplo n.º 15
0
def test_stability(forms, inner_products, spaces, bcs=None):
    """
    Test Babuska-Brezzi stability for a variational problem specified
    by (a set of) forms, inner products and a discretization spaces
    parameterized over a mesh family.
    """

    if ascot_parameters["check_continuity"]:
        info("Checking continuity of form")
        continuous = test_continuity(forms, inner_products, spaces)
        if not continuous.is_stable():
            warning(
                "The form does not seems to be bounded!. Check your inner products!"
            )

    if is_saddle_point(forms):
        return _test_brezzi_stability(forms, inner_products, spaces, bcs)

    return _test_babuska_stability(forms, inner_products, spaces, bcs)
Ejemplo n.º 16
0
 def compute_signs(self, AA, bb):
     self.signs = [None]*len(self)
     bb.allocate(AA, dim=0)
     for i in range(len(self)):
         if not self[i]:
             # No BC on this block, sign doesn't matter
             continue
         if numpy.isscalar(AA[i,i]):
             xAx = AA[i,i]
         else:
             # Do not use a constant vector, as that may be in the null space
             # before boundary conditions are applied
             x = AA[i,i].create_vec(dim=1)
             ran = numpy.random.random(x.local_size())
             x.set_local(ran)
             Ax = AA[i,i]*x
             xAx = x.inner(Ax)
         if xAx == 0:
             from dolfin import warning
             warning("block_bc: zero or semi-definite block (%d,%d), using sign +1"%(i,i))
         self.signs[i] = -1 if xAx < 0 else 1
     dolfin.info('Calculated signs of diagonal blocks:' + str(self.signs))
Ejemplo n.º 17
0
def PVDTempSeries(path, V=None, first=0, last=None):
    '''
    Read in the temp series of functions in V from PVD file. If V is not 
    a function space then a finite element has to be provided for constructing
    the space on the recovered mesh.
    '''
    _, ext = os.path.splitext(path)
    assert ext == '.pvd'

    tree = ET.parse(path)
    collection = list(tree.getroot())[0]
    path = os.path.dirname(os.path.abspath(path))
    # Read in paths/timestamps for VTUs. NOTE: as thus is supposed to be serial
    # assert part 0
    vtus, times = [], []
    for dataset in collection:
        assert dataset.attrib['part'] == '0'

        vtus.append(os.path.join(path, dataset.attrib['file']))
        times.append(float(dataset.attrib['timestep']))

    vtus, times = vtus[slice(first, last,
                             None)], times[slice(first, last, None)]
    # path.vtu -> function. But vertex values!!!!

    if not isinstance(V, FunctionSpace):
        warning('Setting up P1 space on the recovered mesh')

        cell_type = V.cell()  # Dangerously assuming this is a UFL element
        mesh = read_vtu_mesh(vtus[0], cell_type)

        V = FunctionSpace(mesh, V)
    V = get_P1_space(V)

    functions = read_vtu_function(vtus, V)
    ft_pairs = zip(functions, times)

    return TempSeries(ft_pairs)
Ejemplo n.º 18
0
 def compute_signs(self, AA, bb):
     self.signs = [None] * len(self)
     bb.allocate(AA, dim=0)
     for i in range(len(self)):
         if not self[i]:
             # No BC on this block, sign doesn't matter
             continue
         if numpy.isscalar(AA[i, i]):
             xAx = AA[i, i]
         else:
             # Do not use a constant vector, as that may be in the null space
             # before boundary conditions are applied
             x = AA[i, i].create_vec(dim=1)
             ran = numpy.random.random(x.local_size())
             x.set_local(ran)
             Ax = AA[i, i] * x
             xAx = x.inner(Ax)
         if xAx == 0:
             from dolfin import warning
             warning(
                 "block_bc: zero or semi-definite block (%d,%d), using sign +1"
                 % (i, i))
         self.signs[i] = -1 if xAx < 0 else 1
     dolfin.info('Calculated signs of diagonal blocks:' + str(self.signs))
Ejemplo n.º 19
0
def dolfin_to_carpfile(mesh, basename, markers=None, \
                       vert_fields=None, cell_fields=None):
    """
    NOT DEBUGGED:
    Write carp mesh and fields to file from dolfin data

    mesh : dolfin.Mesh
        The dolfin.mesh which should be written to file
    basename : str
        Basename of file which all data will be written to
    markers : dict (optional)
        A dict of name to markers of facet booundaries contained in the mesh
    vert_fields : dict (optional)
        A dict between named vertex field data and dolfin Functions
    cell_fields : dict (optional)
        A dict between named cell field data and dolfin Functions
    
    """
    import dolfin as d
    import numpy as np

    boundary = d.CompiledSubDomain("on_boundary")

    d.warning("This function is not tested...")

    boundary_facets = d.FacetFunction("size_t", mesh, 0)
    boundary.mark(boundary_facets, 1)
    num_boundary_facets = np.sum(boundary_facets.array() == 1)

    with open(basename + ".pts", "w") as f:
        f.write("{0}\n".format(mesh.num_vertices()))
        [f.write("{0:.10f} {1:.10f} {2:.10f}\n".format(*coord)) \
         for coord in mesh.coordinates()]

    with open(basename + ".elem", "w") as f:
        f.write("{0}\n".format(mesh.num_cells()))
        [f.write("Tt {0} {1} {2} {3} 0\n".format(*cell)) \
         for cell in mesh.cells()]

    with open(basename + ".surf", "w") as f:
        f.write("{0}\n".format(num_boundary_facets))
        [f.write("Tr {0} {1} {2}\n".format(*facet.entities(0))) \
         for facet in d.SubsetIterator(boundary_facets, 1)]

    # If generating mapping between vertices and boundaries
    if markers:

        # Get the facet markers
        facet_markers = mesh.domains().facet_domains(mesh)

        # Iterate over markers
        for boundary_name, marker in markers.items():

            vertices = set()
            for face in SubsetIterator(facet_markers, marker):
                vertices.update(face.entities(0))

            with open(basename + "_" + boundary_name + ".vtx", "w") as f:
                f.write("{0:d}\nintra \n".format(int(len(vertices))))
                [f.write("{0}\n".format(vert)) for vert in vertices]

        # Apex node...
        #with open(basename+"_apex.vtx", "w") as f:
        #    f.write("{0:d}\nintra \n".format(1))
        #    f.write("{0:d}\n".format((apex_point.array()==1).nonzero()[0][0]))

    # If outputing vertex fields
    if vert_fields:

        # Get dof mapping
        dofs_to_vert, vectordofs_to_vert, vectordofs_to_subvert = \
                      dofs_to_verts(mesh)

        # Iterate over the passed fields
        for field_name, func in vert_fields.items():
            values = func.vector().array()

            # If scalar field
            if mesh.num_vertices() == len(dofs):
                reordered_values = values[dofs_to_vert]

                # Write the field to file
                with open(basename + "_" + field_name + ".dat", "w") as f:
                    [
                        f.write("{0:.10f}\n".format(value))
                        for value in reordered_values
                    ]

            # If vector field
            elif mesh.num_vertices() == 3 * len(dofs):
                raise NotImplementedError
            else:
                raise ValueError("Field and mesh do not match: " + field_name)
Ejemplo n.º 20
0
from collections import namedtuple
import numpy as np
import dolfin as df
try:
    import mshr
except ImportError:
    df.warning('mshr is not installed')

geometry = namedtuple("geometry", "mesh, ffun, markers")

if df.__version__.startswith('20'):
    # Year based versioning
    DOLFIN_VERSION_MAJOR = float(df.__version__.split('.')[0])
else:
    DOLFIN_VERSION_MAJOR = float('.'.join(df.__version__.split('.')[:2]))

def mpi_comm_world():
    if DOLFIN_VERSION_MAJOR >= 2018:
        return df.MPI.comm_world
    else:
        return df.mpi_comm_world()

def value_size(obj):
    if DOLFIN_VERSION_MAJOR >= 2018:
        value_shape = obj.value_shape()
        if len(value_shape) == 0:
            return 1
        else:
            return [0]
    else:
        return obj.value_size()
    def solve(self):
        """
        Solve the equation
        """

        x, pre_assembly_parameters = self.x(), self.pre_assembly_parameters()
        if not self.__initial_guess is None and not self.__initial_guess is x:
            x.assign(self.__initial_guess)

        if self.is_linear():
            bcs, linear_solver = self.bcs(), self.linear_solver()

            if isinstance(self.__a, dolfin.GenericMatrix):
                L = assemble(self.__L, copy = len(bcs) > 0)
                enforce_bcs(L, bcs)

                linear_solver.solve(x.vector(), L)
            elif self.__a.rank() == 2:
                a = assemble(self.__a, copy = len(bcs) > 0)
                L = assemble(self.__L, copy = len(bcs) > 0)
                apply_bcs(a, bcs, L = L, symmetric_bcs = pre_assembly_parameters["equations"]["symmetric_boundary_conditions"])

                linear_solver.set_operator(a)
                linear_solver.solve(x.vector(), L)
            else:
                assert(self.__a.rank() == 1)
                assert(linear_solver is None)
                a = assemble(self.__a, copy = False)
                L = assemble(self.__L, copy = False)

                assert(L.local_range() == a.local_range())
                x.vector().set_local(L.array() / a.array())
                x.vector().apply("insert")
                enforce_bcs(x.vector(), bcs)
        elif self.solver_parameters().get("nonlinear_solver", "newton") == "newton":
            # Newton solver, intended to have near identical behaviour to the Newton
            # solver supplied with DOLFIN. See
            # http://fenicsproject.org/documentation/tutorial/nonlinear.html for
            # further details.

            default_parameters = dolfin.NewtonSolver.default_parameters()
            solver_parameters = self.solver_parameters()
            if "newton_solver" in solver_parameters:
                parameters = solver_parameters["newton_solver"]
            else:
                parameters = {}
            linear_solver = self.linear_solver()

            atol = default_parameters["absolute_tolerance"]
            rtol = default_parameters["relative_tolerance"]
            max_its = default_parameters["maximum_iterations"]
            omega = default_parameters["relaxation_parameter"]
            err = default_parameters["error_on_nonconvergence"]
            r_def = default_parameters["convergence_criterion"]
            for key in parameters.keys():
                if key == "absolute_tolerance":
                    atol = parameters[key]
                elif key == "convergence_criterion":
                    r_def = parameters[key]
                elif key == "error_on_nonconvergence":
                    err = parameters[key]
                elif key == "maximum_iterations":
                    max_its = parameters[key]
                elif key == "relative_tolerance":
                    rtol = parameters[key]
                elif key == "relaxation_parameter":
                    omega = parameters[key]
                elif key in ["linear_solver", "preconditioner", "lu_solver", "krylov_solver"]:
                    pass
                elif key in ["method", "report"]:
                    raise NotImplementedException("Unsupported Newton solver parameter: %s" % key)
                else:
                    raise ParameterException("Unexpected Newton solver parameter: %s" % key)

            eq, bcs, hbcs = self.eq(), self.bcs(), self.hbcs()
            a, L = self.__a, self.__L

            x_name = x.name()
            x = x.vector()
            enforce_bcs(x, bcs)

            dx = self.__dx
            if not isinstance(linear_solver, dolfin.GenericLUSolver):
                dx.zero()

            if r_def == "residual":
                l_L = assemble(L, copy = len(hbcs) > 0)
                enforce_bcs(l_L, hbcs)
                r_0 = l_L.norm("l2")
                it = 0
                if r_0 >= atol:
                    l_a = assemble(a, copy = len(hbcs) > 0)
                    apply_bcs(l_a, hbcs, symmetric_bcs = pre_assembly_parameters["equations"]["symmetric_boundary_conditions"])
                    linear_solver.set_operator(l_a)
                    linear_solver.solve(dx, l_L)
                    x.axpy(omega, dx)
                    it += 1
                    atol = max(atol, r_0 * rtol)
                    while it < max_its:
                        l_L = assemble(L, copy = len(hbcs) > 0)
                        enforce_bcs(l_L, hbcs)
                        r = l_L.norm("l2")
                        if r < atol:
                            break
                        l_a = assemble(a, copy = len(hbcs) > 0)
                        apply_bcs(l_a, hbcs, symmetric_bcs = pre_assembly_parameters["equations"]["symmetric_boundary_conditions"])
                        linear_solver.set_operator(l_a)
                        linear_solver.solve(dx, l_L)
                        x.axpy(omega, dx)
                        it += 1
            elif r_def == "incremental":
                l_a = assemble(a, copy = len(hbcs) > 0)
                l_L = assemble(L, copy = len(hbcs) > 0)
                apply_bcs(l_a, hbcs, L = l_L, symmetric_bcs = pre_assembly_parameters["equations"]["symmetric_boundary_conditions"])
                linear_solver.set_operator(l_a)
                linear_solver.solve(dx, l_L)
                x.axpy(omega, dx)
                it = 1
                r_0 = dx.norm("l2")
                if r_0 >= atol:
                    atol = max(atol, rtol * r_0)
                    while it < max_its:
                        l_a = assemble(a, copy = len(hbcs) > 0)
                        l_L = assemble(L, copy = len(hbcs) > 0)
                        apply_bcs(l_a, hbcs, L = l_L, symmetric_bcs = pre_assembly_parameters["equations"]["symmetric_boundary_conditions"])
                        linear_solver.set_operator(l_a)
                        linear_solver.solve(dx, l_L)
                        x.axpy(omega, dx)
                        it += 1
                        if dx.norm("l2") < atol:
                            break
            else:
                raise ParameterException("Invalid convergence criterion: %s" % r_def)
            if it == max_its:
                if err:
                    raise StateException("Newton solve for %s failed to converge after %i iterations" % (x_name, it))
                else:
                    dolfin.warning("Newton solve for %s failed to converge after %i iterations" % (x_name, it))
#      dolfin.info("Newton solve for %s converged after %i iterations" % (x_name, it))
        else:
            problem = dolfin.NonlinearVariationalProblem(self.eq().lhs - self.eq().rhs, x, bcs = self.bcs(), J = self.J())
            nl_solver = dolfin.NonlinearVariationalSolver(problem)
            nl_solver.parameters.update(self.solver_parameters())
            nl_solver.solve()

        return
Ejemplo n.º 22
0
# This is the most fragile component of the package so be advised that 
# these ARE NOT GENERAL PURPOSE READEDERS


from dolfin import Function, dof_to_vertex_map, warning, Mesh, MeshEditor
import xml.etree.ElementTree as ET
from itertools import dropwhile
from mpi4py import MPI
import numpy as np

try:
    import h5py
except ImportError:
    warning('H5Py missing')


assert MPI.COMM_WORLD.size == 1, 'No parallel (for your own good)'


def data_reordering(V):
    '''Reshaping/reordering data read from files'''
    # HDF5/VTK store 3d vectors and 3d tensor so we need to chop the data
    # also reorder as in 2017.2.0 only(?) vertex values are dumped
    if V.ufl_element().value_shape() == ():
        dof2v = dof_to_vertex_map(V)
        reorder = lambda a: a[dof2v]

        return reorder
    
    Vi = V.sub(0).collapse()
    dof2v = dof_to_vertex_map(Vi)
Ejemplo n.º 23
0
from collections import namedtuple
import numpy as np
import dolfin as df

try:
    import mshr
except ImportError:
    df.warning("mshr is not installed")

geometry = namedtuple("geometry", "mesh, ffun, markers")

if df.__version__.startswith("20"):
    # Year based versioning
    DOLFIN_VERSION_MAJOR = float(df.__version__.split(".")[0])
else:
    try:
        DOLFIN_VERSION_MAJOR = float(".".join(df.__version__.split(".")[:2]))
    except:
        DOLFIN_VERSION_MAJOR = 1.6


def mpi_comm_world():
    if DOLFIN_VERSION_MAJOR >= 2018:
        return df.MPI.comm_world
    else:
        return df.mpi_comm_world()


def value_size(obj):
    if DOLFIN_VERSION_MAJOR >= 2018:
        value_shape = obj.value_shape()
Ejemplo n.º 24
0
def trace_mat_no_restrict(V, TV, trace_mesh=None, tag_data=None):
    '''The first cell connected to the facet gets to set the values of TV'''
    mesh = V.mesh()

    if trace_mesh is None: trace_mesh = TV.mesh()

    fdim = trace_mesh.topology().dim()

    # None means all
    if tag_data is None:
        tag_data = (MeshFunction('size_t', trace_mesh,
                                 trace_mesh.topology().dim(), 0), set((0, )))

    trace_mesh_subdomains, tags = tag_data
    # Init/extract the mapping
    try:
        assert get_entity_map(mesh, trace_mesh, trace_mesh_subdomains, tags)
    except (AssertionError, IndexError):
        warning('Using non-conforming trace')
        # So non-conforming matrix returns PETSc.Mat
        return nonconforming_trace_mat(V, TV)

    # We can get it
    mapping = trace_mesh.parent_entity_map[mesh.id()][
        fdim]  # Map cell of TV to cells of V

    mesh.init(fdim, fdim + 1)
    f2c = mesh.topology()(fdim, fdim + 1)  # Facets of V to cell of V

    # The idea is to evaluate TV's degrees of freedom at basis functions
    # of V
    Tdmap = TV.dofmap()
    TV_dof = DegreeOfFreedom(TV)

    dmap = V.dofmap()
    V_basis_f = FEBasisFunction(V)

    # Only look at tagged cells
    trace_cells = itertools.chain(*[
        itertools.imap(operator.methodcaller('index'),
                       SubsetIterator(trace_mesh_subdomains, tag))
        for tag in tags
    ])

    # Rows
    visited_dofs = [False] * TV.dim()
    # Column values
    dof_values = np.zeros(V_basis_f.elm.space_dimension(), dtype='double')
    with petsc_serial_matrix(TV, V) as mat:

        for trace_cell in trace_cells:
            # We might
            TV_dof.cell = trace_cell
            trace_dofs = Tdmap.cell_dofs(trace_cell)

            # Figure out the dofs of V to use here. Does not matter which
            # cell of the connected ones we pick
            cell = f2c(mapping[trace_cell])[0]
            V_basis_f.cell = cell

            dofs = dmap.cell_dofs(cell)
            for local_T, dof_T in enumerate(trace_dofs):

                if visited_dofs[dof_T]:
                    continue
                else:
                    visited_dofs[dof_T] = True

                # Define trace dof
                TV_dof.dof = local_T

                # Eval at V basis functions
                for local, dof in enumerate(dofs):
                    # Set which basis foo
                    V_basis_f.dof = local

                    dof_values[local] = TV_dof.eval(V_basis_f)

                # Can fill the matrix now
                col_indices = np.array(dofs, dtype='int32')
                # Insert
                mat.setValues([dof_T], col_indices, dof_values,
                              PETSc.InsertMode.INSERT_VALUES)
    return mat
Ejemplo n.º 25
0
import dolfin
import ffc
import instant
import numpy
import types
import ufl

from .embedded_cpp import *
from .versions import *

__all__ = []

# Only versions 1.5.x and 1.6.x have been tested.
if dolfin_version() < (1, 5, 0) or dolfin_version() >= (1, 7, 0):
    dolfin.warning("DOLFIN version %s not supported" % dolfin.__version__)
if ufl_version() < (1, 5, 0) or ufl_version() >= (1, 7, 0):
    dolfin.warning("UFL version %s not supported" % ufl.__version__)
if ffc_version() < (1, 5, 0) or ffc_version() >= (1, 7, 0):
    dolfin.warning("FFC version %s not supported" % ffc.__version__)
if instant_version() < (1, 5, 0) or instant_version() >= (1, 7, 0):
    dolfin.warning("Instant version %s not supported" % instant.__version__)

# DOLFIN patches.
if dolfin_version() < (1, 1, 0):
    __all__ += \
      [
        "GenericLinearSolver",
        "GenericLUSolver",
        "FacetFunction",
        "MeshFunction",
Ejemplo n.º 26
0
def expand_expr(expr):
    """
    Recursively expand the supplied Expr into the largest possible Sum.
    """

    if not isinstance(expr, ufl.expr.Expr):
        raise InvalidArgumentException("expr must be an Expr")

    if isinstance(expr, ufl.algebra.Sum):
        terms = []
        for term in expr.operands():
            terms += expand_expr(term)
        return terms
    elif isinstance(expr, ufl.algebra.Product):
        ops = expr.operands()
        fact1 = ops[0]
        fact2 = ops[1]
        for op in ops[2:]:
            fact2 *= op
        fact1_terms = expand_expr(fact1)
        fact2_terms = expand_expr(fact2)
        terms = []
        for term1 in fact1_terms:
            for term2 in fact2_terms:
                terms.append(term1 * term2)
        return terms
    elif isinstance(expr, ufl.indexed.Indexed):
        ops = expr.operands()
        assert(len(ops) == 2)
        return [ufl.indexed.Indexed(term, ops[1]) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.tensors.ComponentTensor):
        ops = expr.operands()
        assert(len(ops) == 2)
        return [ufl.tensors.ComponentTensor(term, ops[1]) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.algebra.Division):
        ops = expr.operands()
        assert(len(ops) == 2)
        return [ufl.algebra.Division(term, ops[1]) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.restriction.PositiveRestricted):
        ops = expr.operands()
        assert(len(ops) == 1)
        return [ufl.restriction.PositiveRestricted(term) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.restriction.NegativeRestricted):
        ops = expr.operands()
        assert(len(ops) == 1)
        return [ufl.restriction.NegativeRestricted(term) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.differentiation.Grad):
        ops = expr.operands()
        assert(len(ops) == 1)
        return [ufl.differentiation.Grad(term) for term in expand_expr(ops[0])]
    elif isinstance(expr, (ufl.tensoralgebra.Dot,
                           ufl.tensoralgebra.Inner,
                           ufl.differentiation.CoefficientDerivative,
                           ufl.differentiation.VariableDerivative)):
        return expand_expr(expand(expr))
    # Expr types white-list. These cannot be expanded.
    elif isinstance(expr, (ufl.constantvalue.ConstantValue,
                           ufl.argument.Argument,
                           dolfin.Expression,
                           dolfin.Function,
                           dolfin.Constant,
                           ufl.geometry.Circumradius,
                           ufl.algebra.Abs,
                           ufl.geometry.FacetNormal,
                           ufl.mathfunctions.Sqrt,
                           ufl.classes.Variable,
                           ufl.mathfunctions.Exp,
                           ufl.algebra.Power,
                           ufl.indexing.MultiIndex,
                           ufl.classes.Label)):
        return [expr]
    # Expr types grey-list. It might be possible to expand these, but just ignore
    # them at present.
    elif isinstance(expr, (ufl.tensors.ListTensor,
                           ufl.classes.Conditional,
                           ufl.indexsum.IndexSum)):
        return [expr]
    else:
        dolfin.warning("Expr type %s not expanded by expand_expr" % expr.__class__)
        return [expr]
def nonconforming_trace_mat(V, T):
    '''
    Matrix taking function f from d dim space V to g in (d-1) space T. 
    T(f) ~ g should hold.
    '''
    # For this to work I only make sure that function values are the same
    assert V.dolfin_element().value_rank() == T.dolfin_element().value_rank()
    assert V.ufl_element().value_shape() == T.ufl_element().value_shape()

    # I want to evaluate T degrees of freedom at V basis functions, i.e.
    # L^T_k{phi^V_l}. The picture is
    #
    #   ------
    #   \    /\
    # ===\==/==\====T
    #     \/----\
    #
    # and thus is assume that each dof of T space (row) will involve
    # collisions with several cells/basis function of V space
    
    mesh = V.mesh()  # The (d-1)trace mesh
    tree = mesh.bounding_box_tree()
    limit = mesh.topology().size_global(mesh.topology().dim())

    Tdm = T.dofmap()
    elm_T = T.element()
    # Colliding cells with trace dofs
    collisions = []
    for Tdof_x in T.tabulate_dof_coordinates().reshape((T.dim(), -1)):
        cs = tree.compute_entity_collisions(Point(*Tdof_x))
        if any(c >= limit for c in cs):
            warning('Some colliding cells not found')
            cs = filter(lambda c: c < limit, cs)
        collisions.append(cs)

    # So we fill rows by checking basis functions of on the isected cells
    Vdm = V.dofmap()
    elm_V = V.element()
    
    V_basis_function = FEBasisFunction(V)
    T_degree_of_freedom = DegreeOfFreedom(T)

    visited_dofs = [False]*T.dim()
    with petsc_serial_matrix(T, V) as mat:

        for Tcell in range(T.mesh().num_cells()):
            # Set for this cell
            T_degree_of_freedom.cell = Tcell
            
            Tdofs = Tdm.cell_dofs(Tcell)
            for local_T, Tdof in enumerate(Tdofs):
                # Seen the row?
                if visited_dofs[Tdof]: continue
                
                visited_dofs[Tdof] = True

                # Set to current dof
                T_degree_of_freedom.dof = local_T

                col_indices, col_values = [], []
                # Now all the V cells and their basis functions
                for c in collisions[Tdof]:
                    # Set the dof cell
                    V_basis_function.cell = c
                    
                    Vdofs = Vdm.cell_dofs(c)
                    # Columns
                    for local_V, Vdof in enumerate(Vdofs):
                        if Vdof in col_indices:
                            continue
                        
                        # Set as basis_function
                        V_basis_function.dof = local_V

                        # Evaluate trace dof at basis function
                        dof_value = T_degree_of_freedom.eval(V_basis_function)
                        col_indices.append(Vdof)
                        col_values.append(dof_value)
                # Can fill the matrix row
                col_indices = np.array(col_indices, dtype='int32')
                col_values = np.array(col_values)

                mat.setValues([Tdof], col_indices, col_values, PETSc.InsertMode.INSERT_VALUES)
    return mat
Ejemplo n.º 28
0
import dolfin
import ffc
import instant
import numpy
import types
import ufl

from embedded_cpp import *
from versions import *

__all__ = []

# Only versions 1.2.x and 1.3.x have been tested.
if dolfin_version() < (1, 2, 0) or dolfin_version() >= (1, 5, 0):
  dolfin.warning("DOLFIN version %s not supported" % dolfin.__version__)
if ufl_version() < (1, 2, 0) or ufl_version() >= (1, 5, 0):
  dolfin.warning("UFL version %s not supported" % ufl.__version__)
if ffc_version() < (1, 2, 0) or ffc_version() >= (1, 5, 0):
  dolfin.warning("FFC version %s not supported" % ffc.__version__)
if instant_version() < (1, 2, 0) or instant_version() >= (1, 5, 0):
  dolfin.warning("Instant version %s not supported" % instant.__version__)

# DOLFIN patches.
if dolfin_version() < (1, 1, 0):
  __all__ += \
    [
      "GenericLinearSolver",
      "GenericLUSolver",
      "FacetFunction",
      "MeshFunction",
Ejemplo n.º 29
0
def nonconforming_trace_mat(V, T):
    '''
    Matrix taking function f from d dim space V to g in (d-1) space T. 
    T(f) ~ g should hold.
    '''
    # For this to work I only make sure that function values are the same
    assert V.ufl_element().value_shape() == T.ufl_element().value_shape()

    # I want to evaluate T degrees of freedom at V basis functions, i.e.
    # L^T_k{phi^V_l}. The picture is
    #
    #   ------
    #   \    /\
    # ===\==/==\====T
    #     \/----\
    #
    # and thus is assume that each dof of T space (row) will involve
    # collisions with several cells/basis function of V space. However
    # here we only snap to the first one

    mesh = V.mesh()  # The (d-1)trace mesh
    tree = mesh.bounding_box_tree()
    limit = mesh.num_entities_global(mesh.topology().dim())

    Tdm = T.dofmap()
    elm_T = T.element()
    # Colliding cells with trace dofs
    collisions = []
    for Tdof_x in T.tabulate_dof_coordinates().reshape((T.dim(), -1)):
        c = tree.compute_first_entity_collision(df.Point(*Tdof_x))
        # Contained?
        c >= limit and df.warning('Some colliding cells not found')

        collisions.append(c)

    # So we fill rows by checking basis functions of on the isected cells
    Vdm = V.dofmap()
    elm_V = V.element()

    V_basis_function = FEBasisFunction(V)
    T_degree_of_freedom = DegreeOfFreedom(T)

    X_T = T.tabulate_dof_coordinates().reshape((T.dim(), -1))
    X_V = V.tabulate_dof_coordinates().reshape((V.dim(), -1))

    visited_dofs = np.zeros(T.dim(), dtype=bool)
    col_values = np.zeros(V_basis_function.elm.space_dimension(),
                          dtype='double')
    with petsc_serial_matrix(T, V) as mat:

        for Tcell in range(T.mesh().num_cells()):
            # Set for this cell
            T_degree_of_freedom.cell = Tcell

            Tdofs = Tdm.cell_dofs(Tcell)
            for local_T, Tdof in enumerate(Tdofs):
                # Seen the row?
                if visited_dofs[Tdof]: continue

                visited_dofs[Tdof] = True

                # Set to current dof
                T_degree_of_freedom.dof = local_T

                # Now all the V cells and their basis functions
                c = collisions[Tdof]
                # If we have no reasonable cell leave the row empty
                if c >= limit: continue

                # Set the dof cell
                V_basis_function.cell = c

                Vdofs = np.array(Vdm.cell_dofs(c),
                                 dtype='int32')  # These are columns

                # Fill column
                for local_V, Vdof in enumerate(Vdofs):
                    # Set as basis_function
                    V_basis_function.dof = local_V

                    # Evaluate trace dof at basis function
                    dof_value = T_degree_of_freedom.eval(V_basis_function)

                    col_values[local_V] = dof_value

                mat.setValues([Tdof], Vdofs, col_values,
                              PETSc.InsertMode.INSERT_VALUES)
    return mat
Ejemplo n.º 30
0
def cbc_warning(msg):
    "Raise warning on master process."
    if on_master_process():
        warning(msg)
Ejemplo n.º 31
0
def expand_expr(expr):
    """
    Recursively expand the supplied Expr into the largest possible Sum.
    """

    if not isinstance(expr, ufl.core.expr.Expr):
        raise InvalidArgumentException("expr must be an Expr")

    if isinstance(expr, ufl.algebra.Sum):
        terms = []
        for term in expr.operands():
            terms += expand_expr(term)
        return terms
    elif isinstance(expr, ufl.algebra.Product):
        ops = expr.operands()
        fact1 = ops[0]
        fact2 = ops[1]
        for op in ops[2:]:
            fact2 *= op
        fact1_terms = expand_expr(fact1)
        fact2_terms = expand_expr(fact2)
        terms = []
        for term1 in fact1_terms:
            for term2 in fact2_terms:
                terms.append(term1 * term2)
        return terms
    elif isinstance(expr, ufl.indexed.Indexed):
        ops = expr.operands()
        assert(len(ops) == 2)
        return [ufl.indexed.Indexed(term, ops[1]) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.tensors.ComponentTensor):
        ops = expr.operands()
        assert(len(ops) == 2)
        return [ufl.tensors.ComponentTensor(term, ops[1]) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.algebra.Division):
        ops = expr.operands()
        assert(len(ops) == 2)
        return [ufl.algebra.Division(term, ops[1]) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.restriction.PositiveRestricted):
        ops = expr.operands()
        assert(len(ops) == 1)
        return [ufl.restriction.PositiveRestricted(term) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.restriction.NegativeRestricted):
        ops = expr.operands()
        assert(len(ops) == 1)
        return [ufl.restriction.NegativeRestricted(term) for term in expand_expr(ops[0])]
    elif isinstance(expr, ufl.differentiation.Grad):
        ops = expr.operands()
        assert(len(ops) == 1)
        return [ufl.differentiation.Grad(term) for term in expand_expr(ops[0])]
    elif isinstance(expr, (ufl.tensoralgebra.Dot,
                           ufl.tensoralgebra.Inner,
                           ufl.differentiation.CoefficientDerivative,
                           ufl.differentiation.VariableDerivative)):
        return expand_expr(expand(expr))
    # Expr types white-list. These cannot be expanded.
    elif isinstance(expr, (ufl.constantvalue.ConstantValue,
                           ufl.argument.Argument,
                           dolfin.Expression,
                           dolfin.Function,
                           dolfin.Constant,
                           ufl.geometry.Circumradius,
                           ufl.algebra.Abs,
                           ufl.geometry.FacetNormal,
                           ufl.mathfunctions.Sqrt,
                           ufl.classes.Variable,
                           ufl.mathfunctions.Exp,
                           ufl.algebra.Power,
                           ufl.indexing.MultiIndex,
                           ufl.classes.Label)):
        return [expr]
    # Expr types grey-list. It might be possible to expand these, but just ignore
    # them at present.
    elif isinstance(expr, (ufl.tensors.ListTensor,
                           ufl.classes.Conditional,
                           ufl.indexsum.IndexSum)):
        return [expr]
    else:
        dolfin.warning("Expr type %s not expanded by expand_expr" % expr.__class__)
        return [expr]
Ejemplo n.º 32
0
def trace_mat_no_restrict(V, TV, trace_mesh=None):
    '''The first cell connected to the facet gets to set the values of TV'''
    mesh = V.mesh()

    if trace_mesh is None: trace_mesh = TV.mesh()

    fdim = trace_mesh.topology().dim()

    # Init/extract the mapping
    try:
        assert get_entity_map(mesh, trace_mesh)
    except AssertionError:
        warning('Using non-conforming trace')

        return nonconforming_trace_mat(V, TV)
        
    # We can get it
    mapping = trace_mesh.parent_entity_map[mesh.id()][fdim]  # Map cell of TV to cells of V

    mesh.init(fdim, fdim+1)
    f2c = mesh.topology()(fdim, fdim+1)  # Facets of V to cell of V

    # The idea is to evaluate TV's degrees of freedom at basis functions
    # of V
    Tdmap = TV.dofmap()
    TV_dof = DegreeOfFreedom(TV)

    dmap = V.dofmap()
    V_basis_f = FEBasisFunction(V)

    # Rows
    visited_dofs = [False]*TV.dim()
    # Column values
    dof_values = np.zeros(V_basis_f.elm.space_dimension(), dtype='double')
    with petsc_serial_matrix(TV, V) as mat:

        for trace_cell in range(TV.mesh().num_cells()):
            TV_dof.cell = trace_cell
            trace_dofs = Tdmap.cell_dofs(trace_cell)

            # Figure out the dofs of V to use here. Does not matter which
            # cell of the connected ones we pick
            cell = f2c(mapping[trace_cell])[0]
            V_basis_f.cell = cell
            
            dofs = dmap.cell_dofs(cell)
            for local_T, dof_T in enumerate(trace_dofs):

                if visited_dofs[dof_T]:
                    continue
                else:
                    visited_dofs[dof_T] = True

                # Define trace dof
                TV_dof.dof = local_T
                
                # Eval at V basis functions
                for local, dof in enumerate(dofs):
                    # Set which basis foo
                    V_basis_f.dof = local
                    
                    dof_values[local] = TV_dof.eval(V_basis_f)

                # Can fill the matrix now
                col_indices = np.array(dofs, dtype='int32')
                # Insert
                mat.setValues([dof_T], col_indices, dof_values, PETSc.InsertMode.INSERT_VALUES)
    return mat
Ejemplo n.º 33
0
    def matvec(self, b):
        from time import time
        from block.block_vec import block_vec
        from dolfin import info, Progress
        from ffc.log import log
        TRACE = 13  # dolfin.TRACE

        T = time()

        # If x and initial_guess are block_vecs, some of the blocks may be
        # scalars (although they are normally converted to vectors by bc
        # application). To be sure, call allocate() on them.

        if isinstance(b, block_vec):
            # Create a shallow copy to call allocate() on, to avoid changing the caller's copy of b
            b = block_vec(len(b), b.blocks)
            b.allocate(self.A, dim=0)

        if self.initial_guess:
            # Most (all?) solvers modify x, so make a copy to avoid changing
            # the caller's copy of x
            from block.block_util import copy
            x = copy(self.initial_guess)
            if isinstance(x, block_vec):
                x.allocate(self.A, dim=1)
        else:
            x = self.A.create_vec(dim=1)
            x.zero()

        try:
            log(TRACE, self.__class__.__name__ + ' solve of ' + str(self.A))
            if self.B != 1.0:
                log(TRACE, 'Using preconditioner: ' + str(self.B))
            progress = Progress(self.name, self.maxiter)
            if self.tolerance < 0:
                tolerance = -self.tolerance
                relative = True
            else:
                tolerance = self.tolerance
                relative = False
            x = self.method(self.B,
                            self.AR,
                            x,
                            b,
                            tolerance=tolerance,
                            relativeconv=self.relativeconv,
                            maxiter=self.maxiter,
                            progress=progress,
                            callback=self.callback,
                            **self.kwargs)
            del progress  # trigger final printout
        except Exception as e:
            from dolfin import warning
            warning("Error solving " + self.name)
            raise
        x, self.residuals, self.alphas, self.betas = x

        if self.tolerance == 0:
            msg = "done"
        elif self.converged:
            msg = "converged"
        else:
            msg = "NOT CONV."

        if self.show == 1:
            info('%s %s [iter=%2d, time=%.2fs, res=%.1e]' \
                % (self.name, msg, self.iterations, time()-T, self.residuals[-1]))
        elif self.show >= 2:
            info('%s %s [iter=%2d, time=%.2fs, res=%.1e, true res=%.1e]' \
                % (self.name, msg, self.iterations, time()-T, self.residuals[-1], (self.A*x-b).norm('l2')))
        if self.show == 3:
            from dolfin import MPI
            if MPI.rank(None) == 0:
                try:
                    from matplotlib import pyplot
                    pyplot.figure('%s convergence (show=3)' % self.name)
                    pyplot.semilogy(self.residuals)
                    pyplot.show(block=True)
                except:
                    pass

        if self.R is not None:
            x = self.R * x

        if self.retain_guess:
            self.initial_guess = x

        if not self.converged and self.nonconvergence_is_fatal:
            raise RuntimeError('Not converged')

        return x
Ejemplo n.º 34
0
def trace_mat_no_restrict(V, TV, trace_mesh=None):
    '''The first cell connected to the facet gets to set the values of TV'''
    mesh = V.mesh()

    if trace_mesh is None: trace_mesh = TV.mesh()

    fdim = trace_mesh.topology().dim()

    # Init/extract the mapping
    try:
        assert get_entity_map(mesh, trace_mesh)
    except AssertionError:
        warning('Using non-conforming trace')

        return nonconforming_trace_mat(V, TV)

    # We can get it
    mapping = trace_mesh.parent_entity_map[mesh.id()][
        fdim]  # Map cell of TV to cells of V

    mesh.init(fdim, fdim + 1)
    f2c = mesh.topology()(fdim, fdim + 1)  # Facets of V to cell of V

    # The idea is to evaluate TV's degrees of freedom at basis functions
    # of V
    Tdmap = TV.dofmap()
    TV_dof = DegreeOfFreedom(TV)

    dmap = V.dofmap()
    V_basis_f = FEBasisFunction(V)

    # Rows
    visited_dofs = [False] * TV.dim()
    # Column values
    dof_values = np.zeros(V_basis_f.elm.space_dimension(), dtype='double')
    with petsc_serial_matrix(TV, V) as mat:

        for trace_cell in range(TV.mesh().num_cells()):
            TV_dof.cell = trace_cell
            trace_dofs = Tdmap.cell_dofs(trace_cell)

            # Figure out the dofs of V to use here. Does not matter which
            # cell of the connected ones we pick
            cell = f2c(mapping[trace_cell])[0]
            V_basis_f.cell = cell

            dofs = dmap.cell_dofs(cell)
            for local_T, dof_T in enumerate(trace_dofs):

                if visited_dofs[dof_T]:
                    continue
                else:
                    visited_dofs[dof_T] = True

                # Define trace dof
                TV_dof.dof = local_T

                # Eval at V basis functions
                for local, dof in enumerate(dofs):
                    # Set which basis foo
                    V_basis_f.dof = local

                    dof_values[local] = TV_dof.eval(V_basis_f)

                # Can fill the matrix now
                col_indices = np.array(dofs, dtype='int32')
                # Insert
                mat.setValues([dof_T], col_indices, dof_values,
                              PETSc.InsertMode.INSERT_VALUES)
    return mat
Ejemplo n.º 35
0
def test_stokes_noflow(gamma, Re, nu_interp, postprocessor):
    #set_log_level(WARNING)

    basename = postprocessor.basename
    label = "{}_{}_gamma_{}_Re_{:.0e}".format(basename, nu_interp, gamma, Re)

    c = postprocessor.get_coefficients()
    c[r"\nu_1"] = c[r"\rho_1"] / Re
    c[r"\nu_2"] = c[r"r_visc"] * c[r"\nu_1"]
    c[r"\nu_1"] /= c[r"\rho_0"] * c[r"V_0"] * c[r"L_0"]
    c[r"\nu_2"] /= c[r"\rho_0"] * c[r"V_0"] * c[r"L_0"]

    cc = wrap_coeffs_as_constants(c)
    nu = eval("nu_" + nu_interp)  # choose viscosity interpolation

    for level in range(1, 4):
        mesh, boundary_markers, pinpoint, periodic_bnd = create_domain(level)
        periodic_bnd = None
        W = create_mixed_space(mesh, periodic_boundary=periodic_bnd)
        bcs = create_bcs(W,
                         boundary_markers,
                         periodic_boundary=periodic_bnd,
                         pinpoint=pinpoint)

        phi = create_fixed_vfract(mesh, c)

        # Create forms
        a, L = create_forms(W, rho(phi, cc), nu(phi, cc), c[r"g_a"],
                            boundary_markers, gamma)

        # Solve problem
        w = df.Function(W)
        A, b = df.assemble_system(a, L, bcs)
        solver = df.LUSolver("mumps")
        df.PETScOptions.set("fieldsplit_u_mat_mumps_icntl_14", 500)
        solver.set_operator(A)
        try:
            solver.solve(w.vector(), b)
        except:
            df.warning("Ooops! Something went wrong: {}".format(
                sys.exc_info()[0]))
            continue

        # Pre-process results
        v, p = w.split(True)
        v.rename("v", "velocity")
        p.rename("p", "pressure")

        V_dv = df.FunctionSpace(mesh, "DG",
                                W.sub(0).ufl_element().degree() - 1)
        div_v = df.project(df.div(v), V_dv)
        div_v.rename("div_v", "velocity-divergence")
        D_22 = df.project(v.sub(1).dx(1), V_dv)

        p_h = create_hydrostatic_pressure(mesh, cc)
        #p_ref = df.project(p_h, W.sub(1).ufl_element())
        p_ref = df.project(
            p_h,
            df.FunctionSpace(mesh, df.FiniteElement("CG", mesh.ufl_cell(), 4)))
        v_errL2, v_errH10, div_errL2, p_errL2 = compute_errornorms(
            v, div_v, p, p_ref)

        if nu_interp[:2] == "PW":
            V_nu = df.FunctionSpace(mesh, "DG", phi.ufl_element().degree())
        else:
            V_nu = phi.function_space()
        nu_0 = df.project(nu(phi, cc), V_nu)
        T_22 = df.project(2.0 * nu(phi, cc) * v.sub(1).dx(1), V_nu)

        # Save results
        make_cut = postprocessor._make_cut
        rs = dict(ndofs=W.dim(),
                  level=level,
                  h=mesh.hmin(),
                  r_dens=c[r"r_dens"],
                  r_visc=c[r"r_visc"],
                  gamma=gamma,
                  Re=Re,
                  nu_interp=nu_interp)
        rs[r"$v_2$"] = make_cut(v.sub(1))
        rs[r"$p$"] = make_cut(p)
        rs[r"$\phi$"] = make_cut(phi)
        rs[r"$D_{22}$"] = make_cut(D_22)
        rs[r"$T_{22}$"] = make_cut(T_22)
        rs[r"$\nu$"] = make_cut(nu_0)
        rs[r"$||\mathbf{v} - \mathbf{v}_h||_{L^2}$"] = v_errL2
        rs[r"$||\nabla (\mathbf{v} - \mathbf{v}_h)||_{L^2}$"] = v_errH10
        rs[r"$||\mathrm{div} \mathbf{v}_h||_{L^2}$"] = div_errL2
        rs[r"$||\mathbf{p} - \mathbf{p}_h||_{L^2}$"] = p_errL2
        print(label, level)

        # Send to posprocessor
        comm = mesh.mpi_comm()
        rank = df.MPI.rank(comm)
        postprocessor.add_result(rank, rs)

    # Plot results obtained in the last round
    outdir = os.path.join(postprocessor.outdir, "XDMFoutput")
    with df.XDMFFile(os.path.join(outdir, "v.xdmf")) as file:
        file.write(v, 0.0)
    with df.XDMFFile(os.path.join(outdir, "p.xdmf")) as file:
        file.write(p, 0.0)
    with df.XDMFFile(os.path.join(outdir, "phi.xdmf")) as file:
        file.write(phi, 0.0)
    with df.XDMFFile(os.path.join(outdir, "div_v.xdmf")) as file:
        file.write(div_v, 0.0)

    # Save results into a binary file
    filename = "results_{}.pickle".format(label)
    postprocessor.save_results(filename)

    # Flush plots as we now have data for all level values
    postprocessor.pop_items(["level", "h"])
    postprocessor.flush_plots()

    # Cleanup
    df.set_log_level(df.INFO)
    gc.collect()
Ejemplo n.º 36
0
def trace_mat_no_restrict(V, TV, trace_mesh=None, tag_data=None):
    '''The first cell connected to the facet gets to set the values of TV'''
    mesh = V.mesh()

    if trace_mesh is None: trace_mesh = TV.mesh()

    fdim = trace_mesh.topology().dim()

    # None means all
    if tag_data is None:
        try:
            marking_function = trace_mesh.marking_function
            tag_data = (marking_function, set(marking_function.array()))
        except AttributeError:
            tag_data = (MeshFunction('size_t', trace_mesh,
                                     trace_mesh.topology().dim(), 0), set(
                                         (0, )))

    trace_mesh_subdomains, tags = tag_data
    # Init/extract the mapping
    try:
        assert get_entity_map(mesh, trace_mesh, trace_mesh_subdomains, tags)
    except (AssertionError, IndexError):
        warning('Using non-conforming trace')
        # So non-conforming matrix returns PETSc.Mat
        return nonconforming_trace_mat(V, TV)

    if V.ufl_element().family() == 'HDiv Trace':
        assert V.ufl_element().degree() == 0
        # In this case
        return DLT_trace_mat(V, TV, trace_mesh=trace_mesh, tag_data=tag_data)

    # We can get it
    mapping = trace_mesh.parent_entity_map[mesh.id()][
        fdim]  # Map cell of TV to cells of V

    mesh.init(fdim, fdim + 1)
    f2c = mesh.topology()(fdim, fdim + 1)  # Facets of V to cell of V

    # The idea is to evaluate TV's degrees of freedom at basis functions of V
    Tdmap = TV.dofmap()
    TV_dof = DegreeOfFreedom(TV)

    dmap = V.dofmap()
    V_basis_f = FEBasisFunction(V)

    # Only look at tagged cells
    trace_cells = list(
        itertools.chain(*[
            map(operator.methodcaller('index'),
                SubsetIterator(trace_mesh_subdomains, tag)) for tag in tags
        ]))

    ndofs_elm, nbasis_elm = TV_dof.elm.space_dimension(
    ), V_basis_f.elm.space_dimension()
    local_values = np.zeros((nbasis_elm, ndofs_elm))

    if len(trace_cells) > 10_000:
        print(f'Trace mat {TV.ufl_element()} -> {V.ufl_element()}')
        trace_cells = tqdm.tqdm(trace_cells, total=len(trace_cells))

    rows, cols, values = [], [], []
    # DG spaces don't share rows between cells so we take advantage of
    # this in special branch
    if TV.ufl_element().family() == 'Discontinuous Lagrange':
        for trace_cell in trace_cells:
            TV_dof.cell = trace_cell
            # Many rows at once
            trace_dofs = Tdmap.cell_dofs(trace_cell)
            # Figure out the dofs of V to use here. Does not matter which
            # cell of the connected ones we pick
            cell = f2c(mapping[trace_cell])[0]
            V_basis_f.cell = cell

            # Columns for the rows
            dofs = dmap.cell_dofs(cell)
            for local, dof in enumerate(dofs):
                # Set which basis foo
                V_basis_f.dof = local
                # Get all rows at once
                local_values[local][:] = TV_dof.eval_dofs(V_basis_f)
            # Indices for the filled piece
            rows_ = np.tile(trace_dofs, nbasis_elm)
            cols_ = np.repeat(dofs, ndofs_elm)

            rows.extend(rows_)
            cols.extend(cols_)
            values.extend(local_values.flat)
    # FIXME: Othewise we need to take care of duplicate entrieselse:
    else:
        needs_fill = np.ones(TV.dim(), dtype=bool)

        for trace_cell in trace_cells:
            TV_dof.cell = trace_cell
            # Many rows at once
            trace_dofs = Tdmap.cell_dofs(trace_cell)

            # Don't add duplicates
            unseen = needs_fill[trace_dofs]  # Some will be true and
            # For the future
            needs_fill[trace_dofs[unseen]] = False

            # Figure out the dofs of V to use here. Does not matter which
            # cell of the connected ones we pick
            cell = f2c(mapping[trace_cell])[0]
            V_basis_f.cell = cell

            # Columns for the rows
            dofs = dmap.cell_dofs(cell)
            for local, dof in enumerate(dofs):
                # Set which basis foo
                V_basis_f.dof = local
                # Get all rows at once
                local_values[local][:] = TV_dof.eval_dofs(V_basis_f)
            # Indices for the filled piece
            rows_ = np.tile(trace_dofs[unseen], nbasis_elm)
            cols_ = np.repeat(dofs, sum(unseen))

            rows.extend(rows_)
            cols.extend(cols_)
            values.extend(local_values[:, unseen].flat)

    mat = csr_matrix((values, (rows, cols)), shape=(TV.dim(), V.dim()))

    return PETSc.Mat().createAIJ(comm=PETSc.COMM_WORLD,
                                 size=mat.shape,
                                 csr=(mat.indptr, mat.indices, mat.data))