Ejemplo n.º 1
0
    cells = topologies[gmsh_cell_id]["topology"]
    cell_data = topologies[gmsh_cell_id]["cell_data"]
    num_nodes = MPI.COMM_WORLD.bcast(cells.shape[1], root=0)
    gmsh_facet_id = model.mesh.getElementType("triangle", 1)
    marked_facets = topologies[gmsh_facet_id]["topology"]
    facet_values = topologies[gmsh_facet_id]["cell_data"]
else:
    gmsh_cell_id = MPI.COMM_WORLD.bcast(None, root=0)
    num_nodes = MPI.COMM_WORLD.bcast(None, root=0)
    cells, x = np.empty([0, num_nodes]), np.empty([0, 3])
    marked_facets, facet_values = np.empty((0, 3)), np.empty((0, ))

mesh = create_mesh(MPI.COMM_WORLD, cells, x,
                   ufl_mesh_from_gmsh(gmsh_cell_id, 3))
mesh.name = "ball_d1"
local_entities, local_values = extract_local_entities(mesh, 2, marked_facets,
                                                      facet_values)

mesh.topology.create_connectivity(2, 0)
mt = create_meshtags(mesh, 2, cpp.graph.AdjacencyList_int32(local_entities),
                     np.int32(local_values))
mt.name = "ball_d1_surface"

with XDMFFile(MPI.COMM_WORLD, "mesh.xdmf", "w") as file:
    file.write_mesh(mesh)
    mesh.topology.create_connectivity(2, 3)
    file.write_meshtags(
        mt, geometry_xpath="/Xdmf/Domain/Grid[@Name='ball_d1']/Geometry")

# Create a distributed (parallel) mesh with quadratic geometry.
# Generate mesh on rank 0, then build a distributed mesh. ::
Ejemplo n.º 2
0
def gmsh_model_to_mesh(model, cell_data=False, facet_data=False, gdim=None):
    """
    Given a GMSH model, create a DOLFIN-X mesh and MeshTags.
        model: The GMSH model
        cell_data: Boolean, True of a mesh tag for cell data should be returned
                   (Default: False)
        facet_data: Boolean, True if a mesh tag for facet data should be
                    returned (Default: False)
        gdim: Geometrical dimension of problem (Default: 3)
    """

    if gdim is None:
        gdim = 3

    if MPI.COMM_WORLD.rank == 0:
        # Get mesh geometry
        x = extract_gmsh_geometry(model)

        # Get mesh topology for each element
        topologies = extract_gmsh_topology_and_markers(model)

        # Get information about each cell type from the msh files
        num_cell_types = len(topologies.keys())
        cell_information = {}
        cell_dimensions = numpy.zeros(num_cell_types, dtype=numpy.int32)
        for i, element in enumerate(topologies.keys()):
            properties = model.mesh.getElementProperties(element)
            name, dim, order, num_nodes, local_coords, _ = properties
            cell_information[i] = {"id": element, "dim": dim,
                                   "num_nodes": num_nodes}
            cell_dimensions[i] = dim

        # Sort elements by ascending dimension
        perm_sort = numpy.argsort(cell_dimensions)

        # Broadcast cell type data and geometric dimension
        cell_id = cell_information[perm_sort[-1]]["id"]
        tdim = cell_information[perm_sort[-1]]["dim"]
        num_nodes = cell_information[perm_sort[-1]]["num_nodes"]
        cell_id, num_nodes = MPI.COMM_WORLD.bcast([cell_id, num_nodes], root=0)

        # Check for facet data and broadcast if found
        if facet_data:
            if tdim - 1 in cell_dimensions:
                num_facet_nodes = MPI.COMM_WORLD.bcast(
                    cell_information[perm_sort[-2]]["num_nodes"], root=0)
                gmsh_facet_id = cell_information[perm_sort[-2]]["id"]
                marked_facets = numpy.asarray(topologies[gmsh_facet_id]["topology"], dtype=numpy.int64)
                facet_values = numpy.asarray(topologies[gmsh_facet_id]["cell_data"], dtype=numpy.int32)
            else:
                raise ValueError("No facet data found in file.")

        cells = numpy.asarray(topologies[cell_id]["topology"], dtype=numpy.int64)
        cell_values = numpy.asarray(topologies[cell_id]["cell_data"], dtype=numpy.int32)

    else:
        cell_id, num_nodes = MPI.COMM_WORLD.bcast([None, None], root=0)
        cells, x = numpy.empty([0, num_nodes], dtype=numpy.int32), numpy.empty([0, gdim])
        cell_values = numpy.empty((0,), dtype=numpy.int32)
        if facet_data:
            num_facet_nodes = MPI.COMM_WORLD.bcast(None, root=0)
            marked_facets = numpy.empty((0, num_facet_nodes), dtype=numpy.int32)
            facet_values = numpy.empty((0,), dtype=numpy.int32)

    # Create distributed mesh
    ufl_domain = ufl_mesh_from_gmsh(cell_id, gdim)
    gmsh_cell_perm = perm_gmsh(to_type(str(ufl_domain.ufl_cell())), num_nodes)
    cells = cells[:, gmsh_cell_perm]
    mesh = create_mesh(MPI.COMM_WORLD, cells, x[:, :gdim], ufl_domain)
    # Create MeshTags for cells
    if cell_data:
        local_entities, local_values = extract_local_entities(
            mesh, mesh.topology.dim, cells, cell_values)
        mesh.topology.create_connectivity(mesh.topology.dim, 0)
        adj = AdjacencyList_int32(local_entities)
        ct = create_meshtags(mesh, mesh.topology.dim,
                             adj, numpy.int32(local_values))
        ct.name = "Cell tags"

    # Create MeshTags for facets
    if facet_data:
        # Permute facets from MSH to Dolfin-X ordering
        facet_type = cell_entity_type(to_type(str(ufl_domain.ufl_cell())),
                                      mesh.topology.dim - 1)
        gmsh_facet_perm = perm_gmsh(facet_type, num_facet_nodes)
        marked_facets = marked_facets[:, gmsh_facet_perm]

        local_entities, local_values = extract_local_entities(
            mesh, mesh.topology.dim - 1, marked_facets, facet_values)
        mesh.topology.create_connectivity(
            mesh.topology.dim - 1, mesh.topology.dim)
        adj = AdjacencyList_int32(local_entities)
        ft = create_meshtags(mesh, mesh.topology.dim - 1,
                             adj, numpy.int32(local_values))
        ft.name = "Facet tags"

    if cell_data and facet_data:
        return mesh, ct, ft
    elif cell_data and not facet_data:
        return mesh, ct
    elif not cell_data and facet_data:
        return mesh, ft
    else:
        return mesh
Ejemplo n.º 3
0
def gmsh_to_dolfin(gmsh_model,
                   tdim: int,
                   comm=MPI.COMM_WORLD,
                   prune_y=False,
                   prune_z=False):
    """Converts a gmsh model object into `dolfinx.Mesh` and `dolfinx.MeshTags`
    for physical tags.

    Parameters
    ----------
    gmsh_model
    tdim
        Topological dimension of the mesh
    comm: optional
    ghost_mode: optional
    prune_y: optional
        Prune y-components. Used to embed a flat geometries into lower dimension.
    prune_z: optional
        Prune z-components. Used to embed a flat geometries into lower dimension.

    Note
    ----
    User must call `geo.synchronize()` and `mesh.generate()` before passing the model into
    this method.
    """

    rank = comm.rank

    logger = logging.getLogger("dolfiny")

    if rank == 0:
        # Map from internal gmsh cell type number to gmsh cell name
        # see https://gitlab.onelab.info/gmsh/gmsh/blob/master/Common/GmshDefines.h#L75
        gmsh_cellname = {
            1: 'line',
            2: 'triangle',
            3: "quad",
            4: 'tetra',
            5: "hexahedron",
            8: 'line3',
            9: 'triangle6',
            10: "quad9",
            11: 'tetra10',
            12: 'hexahedron27',
            15: 'vertex',
            21: 'triangle10',
            26: 'line4',
            29: 'tetra20',
            36: 'quad16',
            #  92: 'hexahedron64',
        }

        gmsh_dolfin = {
            "vertex": (CellType.point, 0),
            "line": (CellType.interval, 1),
            "line3": (CellType.interval, 2),
            "line4": (CellType.interval, 3),
            "triangle": (CellType.triangle, 1),
            "triangle6": (CellType.triangle, 2),
            "triangle10": (CellType.triangle, 3),
            "quad": (CellType.quadrilateral, 1),
            "quad9": (CellType.quadrilateral, 2),
            "quad16": (CellType.quadrilateral, 3),
            "tetra": (CellType.tetrahedron, 1),
            "tetra10": (CellType.tetrahedron, 2),
            "tetra20": (CellType.tetrahedron, 3),
            "hexahedron": (CellType.hexahedron, 1),
            "hexahedron27": (CellType.hexahedron, 2),
            #  "hexahedron64": (CellType.hexahedron, 3),
        }

        # Number of nodes for gmsh cell type
        nodes = {
            'vertex': 1,
            'line': 2,
            'line3': 3,
            'line4': 4,
            'triangle': 3,
            'triangle6': 6,
            'triangle10': 10,
            'tetra': 4,
            'tetra10': 10,
            'tetra20': 20,
            'quad': 4,
            'quad9': 9,
            'quad16': 16,
            'hexahedron': 8,
            'hexahedron27': 27,
            #  'hexahedron64': 64,
        }

        # node_tags, coord, param_coords = gmsh_model.mesh.getNodes()

        # FIXME: This silences the RuntimeWarning (ctypes / PEP3118 format string) caused by Gmsh/numpy
        import warnings
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            node_tags, coord, param_coords = gmsh_model.mesh.getNodes()

        # Fetch elements for the mesh
        cell_types, cell_tags, cell_node_tags = gmsh_model.mesh.getElements(
            dim=tdim)

        unused_nodes = numpy.setdiff1d(node_tags, cell_node_tags)
        unused_nodes_indices = []

        # FIXME: This would be expensive for many unused nodes case
        for unused_node in unused_nodes:
            unused_nodes_indices.append(
                numpy.where(node_tags == unused_node)[0])

        unused_nodes_indices = numpy.asarray(unused_nodes_indices)

        # Every node has 3 components in gmsh
        dim = 3
        points = numpy.reshape(coord, (-1, dim))

        # Delete unreferenced nodes
        points = numpy.delete(points, unused_nodes_indices, axis=0)
        node_tags = numpy.delete(node_tags, unused_nodes_indices)

        # Prepare a map from node tag to index in coords array
        nmap = numpy.argsort(node_tags - 1)
        cells = {}

        if len(cell_types) > 1:
            raise RuntimeError("Mixed topology meshes not supported.")

        try:
            cellname = gmsh_cellname[cell_types[0]]
        except KeyError:
            raise RuntimeError(
                f"Gmsh cell code {cell_types[0]:d} not supported.")

        try:
            num_nodes = nodes[cellname]
        except KeyError:
            raise RuntimeError(
                f"Cannot determine number of nodes for Gmsh cell type \"{cellname:s}\"."
            )

        logger.info(f"Processing mesh of gmsh cell name \"{cellname:s}\"")

        # Shift 1-based numbering and apply node map
        cells[cellname] = nmap[cell_node_tags[0] - 1]
        cells[cellname] = numpy.reshape(cells[cellname], (-1, num_nodes))

        if prune_z:
            if not numpy.allclose(points[:, 2], 0.0):
                raise RuntimeError("Non-zero z-component would be pruned.")

            points = points[:, :-1]

        if prune_y:
            if not numpy.allclose(points[:, 1], 0.0):
                raise RuntimeError("Non-zero y-component would be pruned.")

            if prune_z:
                # In the case we already pruned z-component
                points = points[:, 0]
            else:
                points = points[:, [0, 2]]

        try:
            dolfin_cell_type, order = gmsh_dolfin[cellname]
        except KeyError:
            raise RuntimeError(
                f"Cannot determine dolfin cell type for Gmsh cell type \"{cellname:s}\"."
            )

        perm = cpp.io.perm_gmsh(dolfin_cell_type, num_nodes)
        logger.info(f"Mesh will be permuted with {perm}")
        cells = cells[cellname][:, perm]

        logger.info(
            f"Constructing mesh for tdim: {tdim:d}, gdim: {points.shape[1]:d}")
        logger.info(f"Number of elements: {cells.shape[0]:d}")

        cells_shape, pts_shape, cellname = comm.bcast(
            [cells.shape, points.shape, cellname], root=0)
    else:
        cells_shape, pts_shape, cellname = comm.bcast([None, None, None],
                                                      root=0)
        cells = numpy.empty((0, cells_shape[1]))
        points = numpy.empty((0, pts_shape[1]))

    mesh = create_mesh(comm, cells, points,
                       ufl_mesh_from_gmsh(cellname, pts_shape[1]))
    mts = {}

    # Get physical groups (dimension, tag)
    pgdim_pgtags = comm.bcast(
        gmsh_model.getPhysicalGroups() if rank == 0 else None, root=0)

    for pgdim, pgtag in pgdim_pgtags:

        # For the current physical tag there could be multiple entities
        # e.g. user tagged bottom and up boundary part with one physical tag
        entity_tags = comm.bcast(gmsh_model.getEntitiesForPhysicalGroup(
            pgdim, pgtag) if rank == 0 else None,
                                 root=0)
        pg_tag_name = comm.bcast(
            gmsh_model.getPhysicalName(pgdim, pgtag) if rank == 0 else None,
            root=0)

        if pg_tag_name == "":
            pg_tag_name = f"tag_{pgtag:d}"

        if rank == 0:

            _mt_cells = []
            _mt_values = []

            for i, entity_tag in enumerate(entity_tags):
                pgcell_types, pgcell_tags, pgnode_tags = gmsh_model.mesh.getElements(
                    pgdim, entity_tag)

                assert (len(pgcell_types) == 1)
                pgcellname = gmsh_cellname[pgcell_types[0]]
                pgnum_nodes = nodes[pgcellname]

                # Shift 1-based numbering and apply node map
                pgnode_tags[0] = nmap[pgnode_tags[0] - 1]
                _mt_cells.append(pgnode_tags[0].reshape(-1, pgnum_nodes))
                _mt_values.append(
                    numpy.full(_mt_cells[-1].shape[0],
                               pgtag,
                               dtype=numpy.int32))

            # Stack all topology and value data. This prepares data
            # for one MVC per (dim, physical tag) instead of multiple MVCs
            _mt_values = numpy.hstack(_mt_values)
            _mt_cells = numpy.vstack(_mt_cells)

            # Fetch the permutation needed for physical group
            pgdolfin_cell_type, pgorder = gmsh_dolfin[pgcellname]
            pgpermutation = cpp.io.perm_gmsh(pgdolfin_cell_type, pgnum_nodes)

            _mt_cells[:, :] = _mt_cells[:, pgpermutation]

            logger.info(f"Constructing MVC for tdim: {pgdim:d}")
            logger.info(f"Number of data values: {_mt_values.shape[0]:d}")

            mt_cells_shape, pgdim = comm.bcast([_mt_cells.shape, pgdim],
                                               root=0)
        else:
            mt_cells_shape, pgdim = comm.bcast([None, None], root=0)
            _mt_cells = numpy.empty((0, mt_cells_shape[1]))
            _mt_values = numpy.empty((0, ))

        local_entities, local_values = extract_local_entities(
            mesh, pgdim, _mt_cells, _mt_values)

        mesh.topology.create_connectivity(pgdim, 0)

        mt = create_meshtags(mesh, pgdim,
                             cpp.graph.AdjacencyList_int32(local_entities),
                             numpy.int32(local_values))
        mt.name = pg_tag_name

        mts[pg_tag_name] = mt

    return mesh, mts
Ejemplo n.º 4
0
    # Extract marked facets
    marked_entities = pygmsh_mesh.cells[-2].data
    values = pygmsh_mesh.cell_data["gmsh:physical"][-2]

    # Broadcast cell type data and geometric dimension
    num_nodes = MPI.COMM_WORLD.bcast(cells.shape[1], root=0)
else:
    num_nodes = MPI.COMM_WORLD.bcast(None, root=0)
    cells, x = np.empty([0, num_nodes]), np.empty([0, 3])
    marked_entities, values = np.empty((0, 3)), np.empty((0, ))

mesh = create_mesh(MPI.COMM_WORLD, cells, x, ufl_mesh_from_gmsh("tetra", 3))
mesh.name = "ball_d1"

local_entities, local_values = extract_local_entities(mesh, 2, marked_entities,
                                                      values)
mesh.topology.create_connectivity(2, 0)
mt = create_meshtags(mesh, 2, cpp.graph.AdjacencyList_int32(local_entities),
                     np.int32(local_values))
mt.name = "ball_d1_surface"

with XDMFFile(MPI.COMM_WORLD, "mesh.xdmf", "w") as file:
    file.write_mesh(mesh)

    mesh.topology.create_connectivity(2, 3)
    file.write_meshtags(
        mt, geometry_xpath="/Xdmf/Domain/Grid[@Name='ball_d1']/Geometry")

# Create a distributed (parallel) mesh with quadratic geometry
# ============================================================
#