Ejemplo n.º 1
0
def test_assembly_bcs(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = inner(u, v) * dx + inner(u, v) * ds
    L = inner(1.0, v) * dx
    a, L = form(a), form(L)

    bdofsV = locate_dofs_geometrical(V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))
    bc = dirichletbc(PETSc.ScalarType(1), bdofsV, V)

    # Assemble and apply 'global' lifting of bcs
    A = assemble_matrix(a)
    A.assemble()
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    g = b.duplicate()
    with g.localForm() as g_local:
        g_local.set(0.0)
    set_bc(g, [bc])
    f = b - A * g
    set_bc(f, [bc])

    # Assemble vector and apply lifting of bcs during assembly
    b_bc = assemble_vector(L)
    apply_lifting(b_bc, [a], [[bc]])
    b_bc.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b_bc, [bc])

    assert (f - b_bc).norm() == pytest.approx(0.0, rel=1e-12, abs=1e-12)
Ejemplo n.º 2
0
def test_assemble_manifold():
    """Test assembly of poisson problem on a mesh with topological
    dimension 1 but embedded in 2D (gdim=2)"""
    points = np.array([[0.0, 0.0], [0.2, 0.0], [0.4, 0.0],
                       [0.6, 0.0], [0.8, 0.0], [1.0, 0.0]], dtype=np.float64)
    cells = np.array([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]], dtype=np.int32)
    cell = ufl.Cell("interval", geometric_dimension=points.shape[1])
    domain = ufl.Mesh(ufl.VectorElement("Lagrange", cell, 1))
    mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
    assert mesh.geometry.dim == 2
    assert mesh.topology.dim == 1

    U = FunctionSpace(mesh, ("P", 1))
    u, v = ufl.TrialFunction(U), ufl.TestFunction(U)
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx(mesh)
    L = ufl.inner(1.0, v) * ufl.dx(mesh)
    a, L = form(a), form(L)

    bcdofs = locate_dofs_geometrical(U, lambda x: np.isclose(x[0], 0.0))
    bcs = [dirichletbc(PETSc.ScalarType(0), bcdofs, U)]
    A = assemble_matrix(a, bcs=bcs)
    A.assemble()

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[bcs])
    set_bc(b, bcs)

    assert np.isclose(b.norm(), 0.41231)
    assert np.isclose(A.norm(), 25.0199)
Ejemplo n.º 3
0
def solve(dtype=np.float32):
    """Solve the variational problem"""

    # Process forms. This will compile the forms for the requested type.
    a0 = fem.form(a, dtype=dtype)
    if np.issubdtype(dtype, np.complexfloating):
        L0 = fem.form(L, dtype=dtype)
    else:
        L0 = fem.form(ufl.replace(L, {fc: 0, gc: 0}), dtype=dtype)

    # Create a Dirichlet boundary condition
    bc = fem.dirichletbc(value=dtype(0), dofs=dofs, V=V)

    # Assemble forms
    A = fem.assemble_matrix(a0, [bc])
    A.finalize()
    b = fem.assemble_vector(L0)
    fem.apply_lifting(b.array, [a0], bcs=[[bc]])
    b.scatter_reverse(common.ScatterMode.add)
    fem.set_bc(b.array, [bc])

    # Create a Scipy sparse matrix that shares data with A
    As = scipy.sparse.csr_matrix((A.data, A.indices, A.indptr))

    # Solve the variational problem and return the solution
    uh = fem.Function(V, dtype=dtype)
    uh.x.array[:] = scipy.sparse.linalg.spsolve(As, b.array)
    return uh
Ejemplo n.º 4
0
    def solve(self) -> fem.Function:
        """Solve the problem."""

        # Assemble lhs
        self._A.zeroEntries()
        fem.assemble_matrix(self._A, self._a, bcs=self.bcs)
        self._A.assemble()

        # Assemble rhs
        with self._b.localForm() as b_loc:
            b_loc.set(0)
        fem.assemble_vector(self._b, self._L)

        # Apply boundary conditions to the rhs
        fem.apply_lifting(self._b, [self._a], [self.bcs])
        self._b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                            mode=PETSc.ScatterMode.REVERSE)
        fem.set_bc(self._b, self.bcs)

        # Solve linear system and update ghost values in the solution
        self._solver.solve(self._b, self.u.vector)
        self.u.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                  mode=PETSc.ScatterMode.FORWARD)

        return self.u
    def F_nest(self, snes, x, F):
        assert x.getType() == "nest" and F.getType() == "nest"
        # Update solution
        x = x.getNestSubVecs()
        for x_sub, var_sub in zip(x, self.soln_vars):
            x_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)
            with x_sub.localForm() as _x:
                var_sub.x.array[:] = _x.array_r

        # Assemble
        bcs1 = bcs_by_block(extract_function_spaces(self.a, 1), self.bcs)
        for L, F_sub, a in zip(self.L, F.getNestSubVecs(), self.a):
            with F_sub.localForm() as F_sub_local:
                F_sub_local.set(0.0)
            assemble_vector(F_sub, L)
            apply_lifting(F_sub, a, bcs=bcs1, x0=x, scale=-1.0)
            F_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                              mode=PETSc.ScatterMode.REVERSE)

        # Set bc value in RHS
        bcs0 = bcs_by_block(extract_function_spaces(self.L), self.bcs)
        for F_sub, bc, x_sub in zip(F.getNestSubVecs(), bcs0, x):
            set_bc(F_sub, bc, x_sub, -1.0)

        # Must assemble F here in the case of nest matrices
        F.assemble()
Ejemplo n.º 6
0
    def F(self, snes: PETSc.SNES, x: PETSc.Vec, b: PETSc.Vec):
        """Assemble the residual F into the vector b.

        Parameters
        ==========
        snes: the snes object
        x: Vector containing the latest solution.
        b: Vector to assemble the residual into.
        """
        # We need to assign the vector to the function

        x.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                      mode=PETSc.ScatterMode.FORWARD)
        x.copy(self.u.vector)
        self.u.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                  mode=PETSc.ScatterMode.FORWARD)

        # Zero the residual vector
        # import pdb; pdb.set_trace()
        with b.localForm() as b_local:
            b_local.set(0.0)
        assemble_vector(b, self.F_form)

        # Apply boundary conditions
        apply_lifting(b, [self.J_form], [self.bcs], [x], -1.0)
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, self.bcs, x, -1.0)
Ejemplo n.º 7
0
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)
    a = form(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)
    L = form(L)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    facetdim = mesh.topology.dim - 1
    mesh.topology.create_connectivity(facetdim, mesh.topology.dim)
    bndry_facets = np.where(
        np.array(compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    a = form(a)
    A = assemble_matrix(a, bcs=[bc])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.x.scatter_forward()

    M = (u_exact - uh)**2 * dx
    M = form(M)
    error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
Ejemplo n.º 8
0
    def monolithic_solve():
        """Monolithic (interleaved) solver"""
        P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
        P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
        TH = P2_el * P1_el
        W = FunctionSpace(mesh, TH)
        (u, p) = ufl.TrialFunctions(W)
        (v, q) = ufl.TestFunctions(W)
        a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        a01 = ufl.inner(p, ufl.div(v)) * dx
        a10 = ufl.inner(ufl.div(u), q) * dx
        a = a00 + a01 + a10

        p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        p11 = ufl.inner(p, q) * dx
        p_form = p00 + p11

        f = Function(W.sub(0).collapse()[0])
        p_zero = Function(W.sub(1).collapse()[0])
        L0 = inner(f, v) * dx
        L1 = inner(p_zero, q) * dx
        L = L0 + L1

        a, p_form, L = form(a), form(p_form), form(L)

        bdofsW0_P2_0 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets0)
        bdofsW0_P2_1 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets1)

        bc0 = dirichletbc(bc_value, bdofsW0_P2_0, W.sub(0))
        bc1 = dirichletbc(bc_value, bdofsW0_P2_1, W.sub(0))

        A = assemble_matrix(a, bcs=[bc0, bc1])
        A.assemble()
        P = assemble_matrix(p_form, bcs=[bc0, bc1])
        P.assemble()

        b = assemble_vector(L)
        apply_lifting(b, [a], bcs=[[bc0, bc1]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc0, bc1])

        ksp = PETSc.KSP()
        ksp.create(mesh.comm)
        ksp.setOperators(A, P)
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType('lu')

        def monitor(ksp, its, rnorm):
            # print("Num it, rnorm:", its, rnorm)
            pass

        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setMonitor(monitor)
        ksp.setFromOptions()
        x = A.createVecRight()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), A.norm(), P.norm()
Ejemplo n.º 9
0
 def F(self, x, b):
     """Assemble residual vector."""
     with b.localForm() as b_local:
         b_local.set(0.0)
     assemble_vector(b, self.L)
     apply_lifting(b, [self.a], bcs=[[self.bc]], x0=[x], scale=-1.0)
     b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
     set_bc(b, [self.bc], x, -1.0)
Ejemplo n.º 10
0
    def amg_solve(N, method):
        # Elasticity parameters
        E = 1.0e9
        nu = 0.3
        mu = E / (2.0 * (1.0 + nu))
        lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))

        # Stress computation
        def sigma(v):
            return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(
                grad(v))) * Identity(2)

        # Define problem
        mesh = create_unit_square(MPI.COMM_WORLD, N, N)
        V = VectorFunctionSpace(mesh, 'Lagrange', 1)
        u = TrialFunction(V)
        v = TestFunction(V)

        facetdim = mesh.topology.dim - 1
        bndry_facets = locate_entities_boundary(mesh, facetdim, lambda x: np.full(x.shape[1], True))
        bdofs = locate_dofs_topological(V.sub(0), V, facetdim, bndry_facets)
        bc = dirichletbc(PETSc.ScalarType(0), bdofs, V.sub(0))

        # Forms
        a, L = inner(sigma(u), grad(v)) * dx, dot(ufl.as_vector((1.0, 1.0)), v) * dx

        # Assemble linear algebra objects
        A = assemble_matrix(a, [bc])
        A.assemble()
        b = assemble_vector(L)
        apply_lifting(b, [a], [[bc]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc])

        # Create solution function
        u = Function(V)

        # Create near null space basis and orthonormalize
        null_space = build_nullspace(V, u.vector)

        # Attached near-null space to matrix
        A.set_near_nullspace(null_space)

        # Test that basis is orthonormal
        assert null_space.is_orthonormal()

        # Create PETSC smoothed aggregation AMG preconditioner, and
        # create CG solver
        solver = PETSc.KSP().create(mesh.comm)
        solver.setType("cg")

        # Set matrix operator
        solver.setOperators(A)

        # Compute solution and return number of iterations
        return solver.solve(b, u.vector)
Ejemplo n.º 11
0
def test_assembly_dx_domains(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 10, 10, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    # Prepare a marking structures
    # indices cover all cells
    # values are [1, 2, 3, 3, ...]
    cell_map = mesh.topology.index_map(mesh.topology.dim)
    num_cells = cell_map.size_local + cell_map.num_ghosts
    indices = np.arange(0, num_cells)
    values = np.full(indices.shape, 3, dtype=np.intc)
    values[0] = 1
    values[1] = 2
    marker = MeshTags(mesh, mesh.topology.dim, indices, values)
    dx = ufl.Measure('dx', subdomain_data=marker, domain=mesh)
    w = Function(V)
    w.x.array[:] = 0.5

    # Assemble matrix
    a = form(w * ufl.inner(u, v) * (dx(1) + dx(2) + dx(3)))
    A = assemble_matrix(a)
    A.assemble()
    a2 = form(w * ufl.inner(u, v) * dx)
    A2 = assemble_matrix(a2)
    A2.assemble()
    assert (A - A2).norm() < 1.0e-12

    bc = dirichletbc(Function(V), range(30))

    # Assemble vector
    L = form(ufl.inner(w, v) * (dx(1) + dx(2) + dx(3)))
    b = assemble_vector(L)

    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    L2 = form(ufl.inner(w, v) * dx)
    b2 = assemble_vector(L2)
    apply_lifting(b2, [a], [[bc]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                   mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc])
    assert (b - b2).norm() < 1.0e-12

    # Assemble scalar
    L = form(w * (dx(1) + dx(2) + dx(3)))
    s = assemble_scalar(L)
    s = mesh.comm.allreduce(s, op=MPI.SUM)
    assert s == pytest.approx(0.5, 1.0e-12)
    L2 = form(w * dx)
    s2 = assemble_scalar(L2)
    s2 = mesh.comm.allreduce(s2, op=MPI.SUM)
    assert s == pytest.approx(s2, 1.0e-12)
Ejemplo n.º 12
0
    def F(self, snes, x, F):
        """Assemble residual vector."""
        x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        x.copy(self.u.vector)
        self.u.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

        with F.localForm() as f_local:
            f_local.set(0.0)
        fem.assemble_vector(F, self.L)
        fem.apply_lifting(F, [self.a], [[self.bc]], [x], -1.0)
        F.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
        fem.set_bc(F, [self.bc], x, -1.0)
Ejemplo n.º 13
0
 def F_mono(self, snes, x, F):
     x.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
     with x.localForm() as _x:
         self.soln_vars.x.array[:] = _x.array_r
     with F.localForm() as f_local:
         f_local.set(0.0)
     assemble_vector(F, self.L)
     apply_lifting(F, [self.a], bcs=[self.bcs], x0=[x], scale=-1.0)
     F.ghostUpdate(addv=PETSc.InsertMode.ADD,
                   mode=PETSc.ScatterMode.REVERSE)
     set_bc(F, self.bcs, x, -1.0)
Ejemplo n.º 14
0
 def F(self, x: PETSc.Vec, b: PETSc.Vec):
     """Assemble the residual F into the vector b.
     Parameters
     ----------
     x
         The vector containing the latest solution
     b
         Vector to assemble the residual into
     """
     # Reset the residual vector
     with b.localForm() as b_local:
         b_local.set(0.0)
     fem.assemble_vector(b, self._L)
     # Apply boundary condition
     fem.apply_lifting(b, [self._a], [self.bcs], [x], -1.0)
     b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
     fem.set_bc(b, self.bcs, x, -1.0)
Ejemplo n.º 15
0
def test_overlapping_bcs():
    """Test that, when boundaries condition overlap, the last provided
    boundary condition is applied"""
    n = 23
    mesh = create_unit_square(MPI.COMM_WORLD, n, n)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(inner(u, v) * dx)
    L = form(inner(1, v) * dx)

    dofs_left = locate_dofs_geometrical(V, lambda x: x[0] < 1.0 / (2.0 * n))
    dofs_top = locate_dofs_geometrical(V, lambda x: x[1] > 1.0 - 1.0 /
                                       (2.0 * n))
    dof_corner = np.array(list(set(dofs_left).intersection(set(dofs_top))),
                          dtype=np.int64)

    # Check only one dof pair is found globally
    assert len(set(np.concatenate(MPI.COMM_WORLD.allgather(dof_corner)))) == 1

    bcs = [
        dirichletbc(PETSc.ScalarType(0), dofs_left, V),
        dirichletbc(PETSc.ScalarType(123.456), dofs_top, V)
    ]

    A, b = create_matrix(a), create_vector(L)
    assemble_matrix(A, a, bcs=bcs)
    A.assemble()

    # Check the diagonal (only on the rank that owns the row)
    d = A.getDiagonal()
    if len(dof_corner) > 0 and dof_corner[0] < V.dofmap.index_map.size_local:
        assert np.isclose(d.array_r[dof_corner[0]], 1.0)

    with b.localForm() as b_loc:
        b_loc.set(0)
    assemble_vector(b, L)
    apply_lifting(b, [a], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)
    b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

    if len(dof_corner) > 0:
        with b.localForm() as b_loc:
            assert b_loc[dof_corner[0]] == 123.456
Ejemplo n.º 16
0
def project(v, target_func, bcs=[]):
    # Ensure we have a mesh and attach to measure
    V = target_func.function_space
    dx = ufl.dx(V.mesh)

    # Define variational problem for projection
    w = ufl.TestFunction(V)
    Pv = ufl.TrialFunction(V)
    a = ufl.inner(Pv, w) * dx
    L = ufl.inner(v, w) * dx

    # Assemble linear system
    A = assemble_matrix(a, bcs)
    A.assemble()
    b = assemble_vector(L)
    apply_lifting(b, [a], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)

    solve(A, target_func.vector, b)
Ejemplo n.º 17
0
def _solve_varproblem(*args, **kwargs):
    "Solve variational problem a == L or F == 0"

    # Extract arguments
    eq, u, bcs, J, tol, M, form_compiler_parameters, petsc_options \
        = _extract_args(*args, **kwargs)

    # Solve linear variational problem
    if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):

        a = fem.Form(eq.lhs, form_compiler_parameters=form_compiler_parameters)
        L = fem.Form(eq.rhs, form_compiler_parameters=form_compiler_parameters)

        b = fem.assemble_vector(L._cpp_object)
        fem.apply_lifting(b, [a._cpp_object], [bcs])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        fem.set_bc(b, bcs)

        A = fem.assemble_matrix(a._cpp_object, bcs)
        A.assemble()

        comm = L._cpp_object.mesh().mpi_comm()
        ksp = PETSc.KSP().create(comm)
        ksp.setOperators(A)

        ksp.setOptionsPrefix("dolfin_solve_")
        opts = PETSc.Options()
        opts.prefixPush("dolfin_solve_")
        for k, v in petsc_options.items():
            opts[k] = v
        opts.prefixPop()

        ksp.setFromOptions()
        ksp.solve(b, u.vector)

    # Solve nonlinear variational problem
    else:

        raise RuntimeError("Not implemented")
Ejemplo n.º 18
0
def project(v, target_func, degree, bcs=[]):
    # Ensure we have a mesh and attach to measure
    V = target_func.function_space
    dx = ufl.dx(V.mesh, degree=degree)

    # Define variational problem for projection
    w = ufl.TestFunction(V)
    Pv = ufl.TrialFunction(V)
    a = fem.form(ufl.inner(Pv, w) * dx)
    L = fem.form(ufl.inner(v, w) * dx)

    # Assemble linear system
    A = fem.assemble_matrix(a, bcs)
    A.assemble()
    b = fem.assemble_vector(L)
    fem.apply_lifting(b, [a], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    fem.set_bc(b, bcs)

    # Solve linear system
    solver = PETSc.KSP().create(A.getComm())
    solver.setOperators(A)
    solver.solve(b, target_func.vector)
Ejemplo n.º 19
0
    np.array([0, 0, 0], dtype=PETSc.ScalarType),
    locate_dofs_geometrical(
        V,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[1], 1.0))),
    V)

# Assembly and solve
# ------------------
# ::

# Assemble system, applying boundary conditions
A = assemble_matrix(a, bcs=[bc])
A.assemble()

b = assemble_vector(L)
apply_lifting(b, [a], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, [bc])

# Create solution function
u = Function(V)

# Create near null space basis (required for smoothed aggregation AMG)
null_space = build_nullspace(V)

# Attach near nullspace to matrix
A.setNearNullSpace(null_space)

# Set solver options
opts = PETSc.Options()
opts["ksp_type"] = "cg"
Ejemplo n.º 20
0
def test_matrix_assembly_block_nl():
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic structures
    in the nonlinear setting
    """
    mesh = create_unit_square(MPI.COMM_WORLD, 4, 8)
    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)
    V0 = FunctionSpace(mesh, P0)
    V1 = FunctionSpace(mesh, P1)

    def initial_guess_u(x):
        return np.sin(x[0]) * np.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    def bc_value(x):
        return np.cos(x[0]) * np.cos(x[1])

    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(
        mesh, facetdim,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))

    u_bc = Function(V1)
    u_bc.interpolate(bc_value)
    bdofs = locate_dofs_topological(V1, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    # Define variational problem
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    u, p = Function(V0), Function(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    f = 1.0
    g = -3.0

    F0 = inner(u, v) * dx + inner(p, v) * dx - inner(f, v) * dx
    F1 = inner(u, q) * dx + inner(p, q) * dx - inner(g, q) * dx

    a_block = form([[derivative(F0, u, du),
                     derivative(F0, p, dp)],
                    [derivative(F1, u, du),
                     derivative(F1, p, dp)]])
    L_block = form([F0, F1])

    # Monolithic blocked
    x0 = create_vector_block(L_block)
    scatter_local_vectors(x0, [u.vector.array_r, p.vector.array_r],
                          [(u.function_space.dofmap.index_map,
                            u.function_space.dofmap.index_map_bs),
                           (p.function_space.dofmap.index_map,
                            p.function_space.dofmap.index_map_bs)])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    # Ghosts are updated inside assemble_vector_block
    A0 = assemble_matrix_block(a_block, bcs=[bc])
    b0 = assemble_vector_block(L_block, a_block, bcs=[bc], x0=x0, scale=-1.0)
    A0.assemble()
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    x1 = create_vector_nest(L_block)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    A1 = assemble_matrix_nest(a_block, bcs=[bc])
    b1 = assemble_vector_nest(L_block)
    apply_lifting_nest(b1, a_block, bcs=[bc], x0=x1, scale=-1.0)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc])

    set_bc_nest(b1, bcs0, x1, scale=-1.0)
    A1.assemble()

    assert A1.getType() == "nest"
    assert nest_matrix_norm(A1) == pytest.approx(Anorm0, 1.0e-12)
    assert b1.norm() == pytest.approx(bnorm0, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = FunctionSpace(mesh, E)
    dU = ufl.TrialFunction(W)
    U = Function(W)
    u0, u1 = ufl.split(U)
    v0, v1 = ufl.TestFunctions(W)

    U.sub(0).interpolate(initial_guess_u)
    U.sub(1).interpolate(initial_guess_p)

    F = inner(u0, v0) * dx + inner(u1, v0) * dx + inner(u0, v1) * dx + inner(u1, v1) * dx \
        - inner(f, v0) * ufl.dx - inner(g, v1) * dx
    J = derivative(F, U, dU)
    F, J = form(F), form(J)

    bdofsW_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets)

    bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1))
    A2 = assemble_matrix(J, bcs=[bc])
    A2.assemble()
    b2 = assemble_vector(F)
    apply_lifting(b2, [J], bcs=[[bc]], x0=[U.vector], scale=-1.0)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc], x0=U.vector, scale=-1.0)
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-12)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-12)
Ejemplo n.º 21
0
def test_manufactured_poisson(degree, filename, datadir):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """

    with XDMFFile(MPI.comm_world, os.path.join(datadir, filename)) as xdmf:
        mesh = xdmf.read_mesh(GhostMode.none)

    V = FunctionSpace(mesh, ("Lagrange", degree))
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect
    # of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of
    # non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)

    t0 = time.time()
    L = fem.Form(L)
    t1 = time.time()
    print("Linear form compile time:", t1 - t0)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    mesh.create_connectivity_all()
    facetdim = mesh.topology.dim - 1
    bndry_facets = np.where(
        np.array(mesh.topology.on_boundary(facetdim)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    assert (len(bdofs) < V.dim())
    bc = DirichletBC(u_bc, bdofs)

    t0 = time.time()
    b = assemble_vector(L)
    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])
    t1 = time.time()
    print("Vector assembly time:", t1 - t0)

    t0 = time.time()
    a = fem.Form(a)
    t1 = time.time()
    print("Bilinear form compile time:", t1 - t0)

    t0 = time.time()
    A = assemble_matrix(a, [bc])
    A.assemble()
    t1 = time.time()
    print("Matrix assembly time:", t1 - t0)

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.comm_world)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)
    # Solve
    t0 = time.time()
    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                          mode=PETSc.ScatterMode.FORWARD)

    t1 = time.time()
    print("Linear solver time:", t1 - t0)

    M = (u_exact - uh)**2 * dx
    t0 = time.time()
    M = fem.Form(M)
    t1 = time.time()
    print("Error functional compile time:", t1 - t0)

    t0 = time.time()
    error = assemble_scalar(M)
    error = MPI.sum(mesh.mpi_comm(), error)
    t1 = time.time()

    print("Error assembly time:", t1 - t0)
    assert np.absolute(error) < 1.0e-14
Ejemplo n.º 22
0
a = inner(sigma(u), grad(v)) * dx
L = inner(f, v) * dx

u0 = Function(V)
with u0.vector.localForm() as bc_local:
    bc_local.set(0.0)

# Set up boundary condition on inner surface
bc = DirichletBC(u0, locate_dofs_geometrical(V, boundary))

# Assemble system, applying boundary conditions and preserving symmetry)
A = assemble_matrix(a, [bc])
A.assemble()

b = assemble_vector(L)
apply_lifting(b, [a], [[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, [bc])

# Create solution function
u = Function(V)

# Create near null space basis (required for smoothed aggregation AMG).
null_space = build_nullspace(V)

# Attach near nullspace to matrix
A.setNearNullSpace(null_space)

# Set solver options
opts = PETSc.Options()
opts["ksp_type"] = "cg"
Ejemplo n.º 23
0
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)

    with common.Timer("Linear form compile"):
        L = fem.Form(L)

    with common.Timer("Function interpolation"):
        u_bc = Function(V)
        u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    mesh.topology.create_connectivity_all()
    facetdim = mesh.topology.dim - 1
    bndry_facets = np.where(
        np.array(cpp.mesh.compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = DirichletBC(u_bc, bdofs)

    with common.Timer("Vector assembly"):
        b = assemble_vector(L)
        apply_lifting(b, [a], [[bc]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc])

    with common.Timer("Bilinear form compile"):
        a = fem.Form(a)

    with common.Timer("Matrix assembly"):
        A = assemble_matrix(a, [bc])
        A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    with common.Timer("Solve"):
        uh = Function(V)
        solver.solve(b, uh.vector)
        uh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

    with common.Timer("Error functional compile"):
        M = (u_exact - uh)**2 * dx
        M = fem.Form(M)

    with common.Timer("Error assembly"):
        error = mesh.mpi_comm().allreduce(assemble_scalar(M), op=MPI.SUM)

    common.list_timings(MPI.COMM_WORLD, [common.TimingType.wall])
    assert np.absolute(error) < 1.0e-14
Ejemplo n.º 24
0
L = form(ufl.inner(f_exact, v) * dx)

zero_u = Function(V_1)
zero_u.x.array[:] = 0.0

boundary_facets = dolfinx.mesh.locate_entities_boundary(
    mesh, mesh.topology.dim - 1, lambda x: np.full(x.shape[1], True, dtype=bool))
boundary_dofs = dolfinx.fem.locate_dofs_topological(
    (V.sub(1), V_1), mesh.topology.dim - 1, boundary_facets)

bcs = [dirichletbc(zero_u, boundary_dofs, V.sub(1))]

A = assemble_matrix(a, bcs=bcs)
A.assemble()
b = assemble_vector(L)
apply_lifting(b, [a], bcs=[bcs])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, bcs)

# Solve
solver = PETSc.KSP().create(MPI.COMM_WORLD)
PETSc.Options()["ksp_type"] = "preonly"
PETSc.Options()["pc_type"] = "lu"
PETSc.Options()["pc_factor_mat_solver_type"] = "mumps"
solver.setFromOptions()
solver.setOperators(A)

x_h = Function(V)
solver.solve(b, x_h.vector)
x_h.x.scatter_forward()
sigma_h = S(ufl.as_tensor([[x_h[0], x_h[1]], [x_h[2], x_h[3]]]))
    # A = - A10 * A00^{-1} * A01
    A[:, :] = - A10 @ np.linalg.solve(A00, A01)


# Prepare a Form with a condensed tabulation kernel
Form = Form_float64 if PETSc.ScalarType == np.float64 else Form_complex128

integrals = {IntegralType.cell: ([(-1, tabulate_condensed_tensor_A.address)], None)}
a_cond = Form([U._cpp_object, U._cpp_object], integrals, [], [], False, None)

A_cond = assemble_matrix(a_cond, bcs=[bc])
A_cond.assemble()

b = assemble_vector(b1)
apply_lifting(b, [a_cond], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, [bc])

uc = Function(U)
solver = PETSc.KSP().create(A_cond.getComm())
solver.setOperators(A_cond)
solver.solve(b, uc.vector)

# Pure displacement based formulation
a = form(- ufl.inner(sigma_u(u), ufl.grad(v)) * ufl.dx)
A = assemble_matrix(a, bcs=[bc])
A.assemble()

# Create bounding box for function evaluation
bb_tree = geometry.BoundingBoxTree(mesh, 2)
Ejemplo n.º 26
0
def solve_displ_system(J,
                       F,
                       intern_var0,
                       intern_var1,
                       expr_compiled,
                       w0,
                       w1,
                       bcs,
                       df,
                       dt,
                       t,
                       k,
                       io_callback=None,
                       refinement_callback=None,
                       rtol=1.e-6,
                       atol=1.e-16,
                       max_its=20):
    """Solve system for displacement"""

    rank = MPI.COMM_WORLD.rank

    t0 = time()
    A = create_matrix(J)

    if rank == 0:
        logger.info(f"[Timer] Preallocation matrix time {time() - t0:.3f}")

    t0 = time()

    t0 = time()
    b = create_vector(F)
    if rank == 0:
        logger.info(f"[Timer] Preallocation vector time {time() - t0:.3f}")

    with b.localForm() as local:
        local.set(0.0)
    assemble_vector(b, F)
    apply_lifting(b, [J], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)

    resid_norm0 = b.norm()
    if rank == 0:
        print(f"Initial DISPL residual: {resid_norm0:.2e}")

    iter = 0
    # Total number of NR iterations including refinement attempts
    iter_total = 0
    converged = False
    refine = 0
    scale = 1.0
    rel_resid_norm = 1.0

    bcs_init = []
    for bc in bcs:
        bcs_init += [bc.value.vector.duplicate()]
        with bcs_init[-1].localForm() as loc0, bc.value.vector.localForm(
        ) as loc1:
            loc1.copy(loc0)

    df0 = np.copy(df.value)

    while converged is False:

        if iter > max_its or rel_resid_norm > 1.e+2:
            refine += 1
            iter = 0

            if rank == 0:
                logger.info(79 * "!")
                logger.info(
                    f"Restarting NR with rel. stepsize: {1.0 / (2 ** refine)}")

            with w0["displ"].vector.localForm(
            ) as w_local, w1["displ"].vector.localForm() as w1_local:
                w_local.copy(w1_local)

            df.value = df0
            scale = 1.0 / 2**refine

            if refine > 10:
                raise ConvergenceError(
                    "Inner adaptivity reqiures > 10 refinements.")

            # Reset and scale boundary condition
            for i, bc in enumerate(bcs_init):
                with bcs[i].value.vector.localForm(
                ) as bcsi_local, bc.localForm() as bc_local:
                    bc_local.copy(bcsi_local)
                    bcsi_local.scale(scale)

            df.value *= scale
            dt.value *= scale

            if refinement_callback is not None:
                refinement_callback(scale)

        if rank == 0:
            logger.info("Newton iteration for displ {}".format(iter))

        if iter > 0:
            for bc in bcs:
                with bc.value.vector.localForm() as locvec:
                    locvec.set(0.0)

        A.zeroEntries()
        with b.localForm() as local:
            local.set(0.0)

        size = A.getSize()[0]
        local_size = A.getLocalSize()[0]
        t0 = time()
        assemble_matrix(A, J, bcs)
        A.assemble()
        _time = time() - t0

        Anorm = A.norm()
        if rank == 0:
            logger.info(f"[Timer] A0 size: {size}, local size: {local_size}")
            logger.info(f"[Timer] A0 assembly: {_time:.4f}")
            logger.info(f"[Timer] A0 assembly dofs/s: {size / _time:.1f}")
            logger.info(f"A0 norm: {Anorm:.4f}")

        t0 = time()
        assemble_vector(b, F)
        apply_lifting(b, [J], [bcs])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, bcs)
        bnorm = b.norm()
        if rank == 0:
            logger.info(f"[Timer] b0 assembly {time() - t0:.4f}")
            logger.info(f"b norm: {bnorm:.4f}")

        nsp = build_nullspace(w1["displ"].function_space)

        ksp = PETSc.KSP()
        ksp.create(MPI.COMM_WORLD)
        ksp.setOptionsPrefix("disp")
        opts = PETSc.Options()

        A.setNearNullSpace(nsp)
        A.setBlockSize(3)

        ksp.setOperators(A)
        x = A.createVecRight()

        ksp.setFromOptions()
        t0 = time()
        ksp.solve(b, x)
        t1 = time() - t0

        opts.view()

        xnorm = x.norm()

        if rank == 0:
            its = ksp.its
            t1 = time() - t0
            dofsps = int(size / t1)

            logger.info(f"[Timer] A0 converged in: {its}")
            logger.info(f"[Timer] A0 solve: {t1:.4f}")
            logger.info(f"[Timer] A0 solve dofs/s: {dofsps:.1f}")
            logger.info(f"Increment norm: {xnorm}")

        # TODO: Local axpy segfaults, could ghostUpdate be avoided?
        w1["displ"].vector.axpy(1.0, x)
        w1["displ"].vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                       mode=PETSc.ScatterMode.FORWARD)

        #
        # Evaluate true residual and check
        #

        with b.localForm() as local:
            local.set(0.0)
        assemble_vector(b, F)
        apply_lifting(b, [J], [bcs])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, bcs)

        norm = b.norm()
        rel_resid_norm = norm / resid_norm0
        rel_dx_norm = x.norm() / w1["displ"].vector.norm()

        if rank == 0:
            logger.info("---")
            logger.info(f"Abs. resid norm: {norm:.2e}")
            logger.info(f"Rel. dx norm: {rel_dx_norm:.2e}")
            logger.info(f"Rel. resid norm: {rel_resid_norm:.2e}")
            logger.info("---")

        iter += 1
        iter_total += 1

        if rel_resid_norm < rtol or norm < atol:
            if rank == 0:
                logger.info(
                    f"Newton converged in: {iter}, total: {iter_total}")

            if io_callback is not None:
                io_callback(intern_var1, w1, t.value + dt.value)
            return scale
Ejemplo n.º 27
0
def test_biharmonic():
    """Manufactured biharmonic problem.

    Solved using rotated Regge mixed finite element method. This is equivalent
    to the Hellan-Herrmann-Johnson (HHJ) finite element method in
    two-dimensions."""
    mesh = RectangleMesh(MPI.COMM_WORLD, [np.array([0.0, 0.0, 0.0]),
                                          np.array([1.0, 1.0, 0.0])], [32, 32], CellType.triangle)

    element = ufl.MixedElement([ufl.FiniteElement("Regge", ufl.triangle, 1),
                                ufl.FiniteElement("Lagrange", ufl.triangle, 2)])

    V = FunctionSpace(mesh, element)
    sigma, u = ufl.TrialFunctions(V)
    tau, v = ufl.TestFunctions(V)

    x = ufl.SpatialCoordinate(mesh)
    u_exact = ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[0]) * ufl.sin(ufl.pi * x[1]) * ufl.sin(ufl.pi * x[1])
    f_exact = div(grad(div(grad(u_exact))))
    sigma_exact = grad(grad(u_exact))

    # sigma and tau are tangential-tangential continuous according to the
    # H(curl curl) continuity of the Regge space. However, for the biharmonic
    # problem we require normal-normal continuity H (div div). Theorem 4.2 of
    # Lizao Li's PhD thesis shows that the latter space can be constructed by
    # the former through the action of the operator S:
    def S(tau):
        return tau - ufl.Identity(2) * ufl.tr(tau)

    sigma_S = S(sigma)
    tau_S = S(tau)

    # Discrete duality inner product eq. 4.5 Lizao Li's PhD thesis
    def b(tau_S, v):
        n = FacetNormal(mesh)
        return inner(tau_S, grad(grad(v))) * dx \
            - ufl.dot(ufl.dot(tau_S('+'), n('+')), n('+')) * jump(grad(v), n) * dS \
            - ufl.dot(ufl.dot(tau_S, n), n) * ufl.dot(grad(v), n) * ds

    # Non-symmetric formulation
    a = inner(sigma_S, tau_S) * dx - b(tau_S, u) + b(sigma_S, v)
    L = inner(f_exact, v) * dx

    V_1 = V.sub(1).collapse()
    zero_u = Function(V_1)
    with zero_u.vector.localForm() as zero_u_local:
        zero_u_local.set(0.0)

    # Strong (Dirichlet) boundary condition
    boundary_facets = locate_entities_boundary(
        mesh, mesh.topology.dim - 1, lambda x: np.full(x.shape[1], True, dtype=bool))
    boundary_dofs = locate_dofs_topological((V.sub(1), V_1), mesh.topology.dim - 1, boundary_facets)

    bcs = [DirichletBC(zero_u, boundary_dofs, V.sub(1))]

    A = assemble_matrix(a, bcs=bcs)
    A.assemble()
    b = assemble_vector(L)
    apply_lifting(b, [a], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

    # Solve
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    PETSc.Options()["ksp_type"] = "preonly"
    PETSc.Options()["pc_type"] = "lu"
    # PETSc.Options()["pc_factor_mat_solver_type"] = "mumps"
    solver.setFromOptions()
    solver.setOperators(A)

    x_h = Function(V)
    solver.solve(b, x_h.vector)
    x_h.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    # Recall that x_h has flattened indices.
    u_error_numerator = np.sqrt(mesh.mpi_comm().allreduce(assemble_scalar(
        inner(u_exact - x_h[4], u_exact - x_h[4]) * dx(mesh, metadata={"quadrature_degree": 5})), op=MPI.SUM))
    u_error_denominator = np.sqrt(mesh.mpi_comm().allreduce(assemble_scalar(
        inner(u_exact, u_exact) * dx(mesh, metadata={"quadrature_degree": 5})), op=MPI.SUM))

    assert(np.absolute(u_error_numerator / u_error_denominator) < 0.05)

    # Reconstruct tensor from flattened indices.
    # Apply inverse transform. In 2D we have S^{-1} = S.
    sigma_h = S(ufl.as_tensor([[x_h[0], x_h[1]], [x_h[2], x_h[3]]]))
    sigma_error_numerator = np.sqrt(mesh.mpi_comm().allreduce(assemble_scalar(
        inner(sigma_exact - sigma_h, sigma_exact - sigma_h) * dx(mesh, metadata={"quadrature_degree": 5})), op=MPI.SUM))
    sigma_error_denominator = np.sqrt(mesh.mpi_comm().allreduce(assemble_scalar(
        inner(sigma_exact, sigma_exact) * dx(mesh, metadata={"quadrature_degree": 5})), op=MPI.SUM))

    assert(np.absolute(sigma_error_numerator / sigma_error_denominator) < 0.005)
Ejemplo n.º 28
0
def demo_stacked_cubes(outfile: XDMFFile,
                       theta: float,
                       gmsh: bool = True,
                       quad: bool = False,
                       compare: bool = False,
                       res: float = 0.1):
    log_info(
        f"Run theta:{theta:.2f}, Quad: {quad}, Gmsh {gmsh}, Res {res:.2e}")

    celltype = "quadrilateral" if quad else "triangle"
    if gmsh:
        mesh, mt = gmsh_2D_stacked(celltype, theta)
        mesh.name = f"mesh_{celltype}_{theta:.2f}_gmsh"

    else:
        mesh_name = "mesh"
        filename = f"meshes/mesh_{celltype}_{theta:.2f}.xdmf"

        mesh_2D_dolfin(celltype, theta)
        with XDMFFile(MPI.COMM_WORLD, filename, "r") as xdmf:
            mesh = xdmf.read_mesh(name=mesh_name)
            mesh.name = f"mesh_{celltype}_{theta:.2f}"
            tdim = mesh.topology.dim
            fdim = tdim - 1
            mesh.topology.create_connectivity(tdim, tdim)
            mesh.topology.create_connectivity(fdim, tdim)
            mt = xdmf.read_meshtags(mesh, name="facet_tags")

    # Helper until meshtags can be read in from xdmf
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))

    r_matrix = rotation_matrix([0, 0, 1], theta)
    g_vec = np.dot(r_matrix, [0, -1.25e2, 0])
    g = Constant(mesh, PETSc.ScalarType(g_vec[:2]))

    def bottom_corner(x):
        return np.isclose(x, [[0], [0], [0]]).all(axis=0)

    # Fix bottom corner
    bc_value = np.array((0, ) * mesh.geometry.dim, dtype=PETSc.ScalarType)
    bottom_dofs = locate_dofs_geometrical(V, bottom_corner)
    bc_bottom = dirichletbc(bc_value, bottom_dofs, V)
    bcs = [bc_bottom]

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e3)
    nu = 0
    mu = Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) +
                lmbda * tr(sym(grad(v))) * Identity(len(v)))

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    ds = Measure("ds", domain=mesh, subdomain_data=mt, subdomain_id=3)
    rhs = inner(Constant(mesh, PETSc.ScalarType(
        (0, 0))), v) * dx + inner(g, v) * ds

    def left_corner(x):
        return np.isclose(x.T, np.dot(r_matrix, [0, 2, 0])).all(axis=1)

    # Create multi point constraint
    mpc = MultiPointConstraint(V)

    with Timer("~Contact: Create contact constraint"):
        nh = create_normal_approximation(V, mt, 4)
        mpc.create_contact_slip_condition(mt, 4, 9, nh)

    with Timer("~Contact: Add non-slip condition at bottom interface"):
        bottom_normal = facet_normal_approximation(V, mt, 5)
        mpc.create_slip_constraint(V, (mt, 5), bottom_normal, bcs=bcs)

    with Timer("~Contact: Add tangential constraint at one point"):
        vertex = locate_entities_boundary(mesh, 0, left_corner)

        tangent = facet_normal_approximation(V, mt, 3, tangent=True)
        mtv = meshtags(mesh, 0, vertex, np.full(len(vertex), 6,
                                                dtype=np.int32))
        mpc.create_slip_constraint(V, (mtv, 6), tangent, bcs=bcs)

    mpc.finalize()
    rtol = 1e-9
    petsc_options = {
        "ksp_rtol": 1e-9,
        "pc_type": "gamg",
        "pc_gamg_type": "agg",
        "pc_gamg_square_graph": 2,
        "pc_gamg_threshold": 0.02,
        "pc_gamg_coarse_eq_limit": 1000,
        "pc_gamg_sym_graph": True,
        "mg_levels_ksp_type": "chebyshev",
        "mg_levels_pc_type": "jacobi",
        "mg_levels_esteig_ksp_type": "cg"
        #  , "help": None, "ksp_view": None
    }

    # Solve Linear problem
    problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)

    # Build near nullspace
    null_space = rigid_motions_nullspace(mpc.function_space)
    problem.A.setNearNullSpace(null_space)
    u_h = problem.solve()

    it = problem.solver.getIterationNumber()
    if MPI.COMM_WORLD.rank == 0:
        print("Number of iterations: {0:d}".format(it))

    unorm = u_h.vector.norm()
    if MPI.COMM_WORLD.rank == 0:
        print(f"Norm of u: {unorm}")

    # Write solution to file
    ext = "_gmsh" if gmsh else ""
    u_h.name = "u_mpc_{0:s}_{1:.2f}{2:s}".format(celltype, theta, ext)

    outfile.write_mesh(mesh)
    outfile.write_function(u_h, 0.0,
                           f"Xdmf/Domain/Grid[@Name='{mesh.name}'][1]")

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    if not compare:
        return
    log_info("Solving reference problem with global matrix (using numpy)")
    with Timer("~MPC: Reference problem"):
        # Generate reference matrices and unconstrained solution
        A_org = assemble_matrix(form(a), bcs)
        A_org.assemble()
        L_org = assemble_vector(form(rhs))
        apply_lifting(L_org, [form(a)], [bcs])
        L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                          mode=PETSc.ScatterMode.REVERSE)
        set_bc(L_org, bcs)

    root = 0
    with Timer("~MPC: Verification"):
        compare_mpc_lhs(A_org, problem.A, mpc, root=root)
        compare_mpc_rhs(L_org, problem.b, mpc, root=root)
        # Gather LHS, RHS and solution on one process
        A_csr = gather_PETScMatrix(A_org, root=root)
        K = gather_transformation_matrix(mpc, root=root)
        L_np = gather_PETScVector(L_org, root=root)
        u_mpc = gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d

            assert np.allclose(uh_numpy, u_mpc, rtol=rtol)
Ejemplo n.º 29
0
def test_matrix_assembly_block(mode):
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic
    structures"""
    mesh = create_unit_square(MPI.COMM_WORLD, 4, 8, ghost_mode=mode)
    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)
    V0 = FunctionSpace(mesh, P0)
    V1 = FunctionSpace(mesh, P1)

    # Locate facets on boundary
    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(mesh, facetdim, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                                                                    np.isclose(x[0], 1.0)))
    bdofsV1 = locate_dofs_topological(V1, facetdim, bndry_facets)
    u_bc = PETSc.ScalarType(50.0)
    bc = dirichletbc(u_bc, bdofsV1, V1)

    # Define variational problem
    u, p = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)
    f = 1.0
    g = -3.0
    zero = Function(V0)

    a00 = inner(u, v) * dx
    a01 = inner(p, v) * dx
    a10 = inner(u, q) * dx
    a11 = inner(p, q) * dx

    L0 = zero * inner(f, v) * dx
    L1 = inner(g, q) * dx

    a_block = form([[a00, a01], [a10, a11]])
    L_block = form([L0, L1])

    # Monolithic blocked
    A0 = assemble_matrix_block(a_block, bcs=[bc])
    A0.assemble()
    b0 = assemble_vector_block(L_block, a_block, bcs=[bc])
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    A1 = assemble_matrix_nest(a_block, bcs=[bc], mat_types=[["baij", "aij"], ["aij", ""]])
    A1.assemble()
    Anorm1 = nest_matrix_norm(A1)
    assert Anorm0 == pytest.approx(Anorm1, 1.0e-12)

    b1 = assemble_vector_nest(L_block)
    apply_lifting_nest(b1, a_block, bcs=[bc])
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc])
    set_bc_nest(b1, bcs0)
    b1.assemble()

    bnorm1 = math.sqrt(sum([x.norm()**2 for x in b1.getNestSubVecs()]))
    assert bnorm0 == pytest.approx(bnorm1, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = FunctionSpace(mesh, E)
    u0, u1 = ufl.TrialFunctions(W)
    v0, v1 = ufl.TestFunctions(W)
    a = inner(u0, v0) * dx + inner(u1, v1) * dx + inner(u0, v1) * dx + inner(
        u1, v0) * dx
    L = zero * inner(f, v0) * ufl.dx + inner(g, v1) * dx
    a, L = form(a), form(L)

    bdofsW_V1 = locate_dofs_topological(W.sub(1), mesh.topology.dim - 1, bndry_facets)
    bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1))
    A2 = assemble_matrix(a, bcs=[bc])
    A2.assemble()
    b2 = assemble_vector(L)
    apply_lifting(b2, [a], bcs=[[bc]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc])
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-9)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-9)
Ejemplo n.º 30
0
def test_assembly_solve_block(mode):
    """Solve a two-field mass-matrix like problem with block matrix approaches
    and test that solution is the same"""
    mesh = create_unit_square(MPI.COMM_WORLD, 32, 31, ghost_mode=mode)
    P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    V0 = FunctionSpace(mesh, P)
    V1 = V0.clone()

    # Locate facets on boundary
    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(mesh, facetdim, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                                                                    np.isclose(x[0], 1.0)))

    bdofsV0 = locate_dofs_topological(V0, facetdim, bndry_facets)
    bdofsV1 = locate_dofs_topological(V1, facetdim, bndry_facets)

    u0_bc = PETSc.ScalarType(50.0)
    u1_bc = PETSc.ScalarType(20.0)
    bcs = [dirichletbc(u0_bc, bdofsV0, V0), dirichletbc(u1_bc, bdofsV1, V1)]

    # Variational problem
    u, p = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)
    f = 1.0
    g = -3.0
    zero = Function(V0)

    a00 = form(inner(u, v) * dx)
    a01 = form(zero * inner(p, v) * dx)
    a10 = form(zero * inner(u, q) * dx)
    a11 = form(inner(p, q) * dx)
    L0 = form(inner(f, v) * dx)
    L1 = form(inner(g, q) * dx)

    def monitor(ksp, its, rnorm):
        pass
        # print("Norm:", its, rnorm)

    A0 = assemble_matrix_block([[a00, a01], [a10, a11]], bcs=bcs)
    b0 = assemble_vector_block([L0, L1], [[a00, a01], [a10, a11]], bcs=bcs)
    A0.assemble()
    A0norm = A0.norm()
    b0norm = b0.norm()
    x0 = A0.createVecLeft()
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setOperators(A0)
    ksp.setMonitor(monitor)
    ksp.setType('cg')
    ksp.setTolerances(rtol=1.0e-14)
    ksp.setFromOptions()
    ksp.solve(b0, x0)
    x0norm = x0.norm()

    # Nested (MatNest)
    A1 = assemble_matrix_nest([[a00, a01], [a10, a11]], bcs=bcs, diagonal=1.0)
    A1.assemble()
    b1 = assemble_vector_nest([L0, L1])
    apply_lifting_nest(b1, [[a00, a01], [a10, a11]], bcs=bcs)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L0.function_spaces[0], L1.function_spaces[0]], bcs)
    set_bc_nest(b1, bcs0)
    b1.assemble()

    b1norm = b1.norm()
    assert b1norm == pytest.approx(b0norm, 1.0e-12)
    A1norm = nest_matrix_norm(A1)
    assert A0norm == pytest.approx(A1norm, 1.0e-12)

    x1 = b1.copy()
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setMonitor(monitor)
    ksp.setOperators(A1)
    ksp.setType('cg')
    ksp.setTolerances(rtol=1.0e-12)
    ksp.setFromOptions()
    ksp.solve(b1, x1)
    x1norm = x1.norm()
    assert x1norm == pytest.approx(x0norm, rel=1.0e-12)

    # Monolithic version
    E = P * P
    W = FunctionSpace(mesh, E)
    u0, u1 = ufl.TrialFunctions(W)
    v0, v1 = ufl.TestFunctions(W)
    a = inner(u0, v0) * dx + inner(u1, v1) * dx
    L = inner(f, v0) * ufl.dx + inner(g, v1) * dx
    a, L = form(a), form(L)

    bdofsW0_V0 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets)
    bdofsW1_V1 = locate_dofs_topological(W.sub(1), facetdim, bndry_facets)
    bcs = [dirichletbc(u0_bc, bdofsW0_V0, W.sub(0)), dirichletbc(u1_bc, bdofsW1_V1, W.sub(1))]

    A2 = assemble_matrix(a, bcs=bcs)
    A2.assemble()
    b2 = assemble_vector(L)
    apply_lifting(b2, [a], [bcs])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, bcs)
    A2norm = A2.norm()
    b2norm = b2.norm()
    assert A2norm == pytest.approx(A0norm, 1.0e-12)
    assert b2norm == pytest.approx(b0norm, 1.0e-12)

    x2 = b2.copy()
    ksp = PETSc.KSP()
    ksp.create(mesh.comm)
    ksp.setMonitor(monitor)
    ksp.setOperators(A2)
    ksp.setType('cg')
    ksp.getPC().setType('jacobi')
    ksp.setTolerances(rtol=1.0e-12)
    ksp.setFromOptions()
    ksp.solve(b2, x2)
    x2norm = x2.norm()
    assert x2norm == pytest.approx(x0norm, 1.0e-10)