Ejemplo n.º 1
0
def log_info(message):
    """
    Wrapper for logging a simple string on the zeroth communicator
    Reverting the log level
    """
    old_level = _log.get_log_level()
    if MPI.COMM_WORLD.rank == 0:
        _log.set_log_level(_log.LogLevel.INFO)
        _log.log(_log.LogLevel.INFO,
                 message)
        _log.set_log_level(old_level)
Ejemplo n.º 2
0
def test_log():
    info = log.LogLevel.INFO
    warn = log.LogLevel.WARNING
    error = log.LogLevel.ERROR
    print(info, warn, error)

    log.set_log_level(warn)
    log.log(info, "HELLO")
    log.log(warn, "HELLO")
    log.log(error, "HELLO")

    log.set_log_level(info)
    log.log(info, "HELLO")
    log.log(warn, "HELLO")
    log.log(error, "HELLO")
Ejemplo n.º 3
0
    sqrt,
    FacetArea,
    jump,
    tr,
)
import dolfinx.fem as fem, ufl
import numpy as np
from mpi4py import MPI
from petsc4py.PETSc import ScalarType as st
from petsc4py import PETSc
import math
from matplotlib import pyplot as plt
from dolfinx.log import set_log_level, LogLevel, set_output_file
from dolfiny.interpolation import interpolate as dl_interp

set_log_level(LogLevel.INFO)

# setup quadrature degree
metadata = {"quadrature_degree": 5}

# mark the boundaries
left = lambda x: np.isclose(x[0], 0)
right = lambda x: np.isclose(x[0], 1.0)
bottom = lambda x: np.isclose(x[1], 0)
back = lambda x: np.isclose(x[2], 0)


# helper function to project
def project(v, target_func, degree, bcs=[]):
    # Ensure we have a mesh and attach to measure
    V = target_func.function_space
Ejemplo n.º 4
0
from dolfinx.mesh import CellType
import ufl

from mpi4py import MPI
import petsc4py
from petsc4py import PETSc
import sys
import yaml

sys.path.append("../")
from solvers import SNESSolver

# ///////////

petsc4py.init(sys.argv)
log.set_log_level(log.LogLevel.WARNING)

comm = MPI.COMM_WORLD

with open("parameters.yml") as f:
    parameters = yaml.load(f, Loader=yaml.FullLoader)

# Get mesh parameters
Lx = parameters["geometry"]["Lx"]
Ly = parameters["geometry"]["Ly"]
tdim = parameters["geometry"]["geometric_dimension"]
lc = parameters["geometry"]["lc"]

# Get geometry model
geom_type = parameters["geometry"]["geom_type"]
Ejemplo n.º 5
0
from dolfinx.mesh import locate_entities_boundary, meshtags
from dolfinx_mpc import LinearProblem, MultiPointConstraint
from dolfinx_mpc.utils import (compare_mpc_lhs, compare_mpc_rhs,
                               create_normal_approximation,
                               facet_normal_approximation, gather_PETScMatrix,
                               gather_PETScVector,
                               gather_transformation_matrix, log_info,
                               rigid_motions_nullspace, rotation_matrix)
from mpi4py import MPI
from petsc4py import PETSc
from ufl import (Identity, Measure, TestFunction, TrialFunction, dx, grad,
                 inner, sym, tr)

from create_and_export_mesh import gmsh_2D_stacked, mesh_2D_dolfin

set_log_level(LogLevel.ERROR)


def demo_stacked_cubes(outfile: XDMFFile,
                       theta: float,
                       gmsh: bool = True,
                       quad: bool = False,
                       compare: bool = False,
                       res: float = 0.1):
    log_info(
        f"Run theta:{theta:.2f}, Quad: {quad}, Gmsh {gmsh}, Res {res:.2e}")

    celltype = "quadrilateral" if quad else "triangle"
    if gmsh:
        mesh, mt = gmsh_2D_stacked(celltype, theta)
        mesh.name = f"mesh_{celltype}_{theta:.2f}_gmsh"
Ejemplo n.º 6
0
def nitsche_ufl(mesh: dmesh.Mesh, mesh_data: Tuple[_cpp.mesh.MeshTags_int32, int, int],
                physical_parameters: dict = {}, nitsche_parameters: Dict[str, float] = {},
                plane_loc: float = 0.0, vertical_displacement: float = -0.1,
                nitsche_bc: bool = True, quadrature_degree: int = 5, form_compiler_params: Dict = {},
                jit_params: Dict = {}, petsc_options: Dict = {}, newton_options: Dict = {}) -> _fem.Function:
    """
    Use UFL to compute the one sided contact problem with a mesh coming into contact
    with a rigid surface (not meshed).

    Parameters
    ==========
    mesh
        The input mesh
    mesh_data
        A triplet with a mesh tag for facets and values v0, v1. v0 should be the value in the mesh tags
        for facets to apply a Dirichlet condition on. v1 is the value for facets which should have applied
        a contact condition on
    physical_parameters
        Optional dictionary with information about the linear elasticity problem.
        Valid (key, value) tuples are: ('E': float), ('nu', float), ('strain', bool)
    nitsche_parameters
        Optional dictionary with information about the Nitsche configuration.
        Valid (keu, value) tuples are: ('gamma', float), ('theta', float) where theta can be -1, 0 or 1 for
        skew-symmetric, penalty like or symmetric enforcement of Nitsche conditions
    plane_loc
        The location of the plane in y-coordinate (2D) and z-coordinate (3D)
    vertical_displacement
        The amount of verticial displacment enforced on Dirichlet boundary
    nitsche_bc
        Use Nitche's method to enforce Dirichlet boundary conditions
    quadrature_degree
        The quadrature degree to use for the custom contact kernels
    form_compiler_params
        Parameters used in FFCX compilation of this form. Run `ffcx --help` at
        the commandline to see all available options. Takes priority over all
        other parameter values, except for `scalar_type` which is determined by
        DOLFINX.
    jit_params
        Parameters used in CFFI JIT compilation of C code generated by FFCX.
        See https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py
        for all available parameters. Takes priority over all other parameter values.
    petsc_options
        Parameters that is passed to the linear algebra backend
        PETSc. For available choices for the 'petsc_options' kwarg,
        see the `PETSc-documentation
        <https://petsc4py.readthedocs.io/en/stable/manual/ksp/>`
    newton_options
        Dictionary with Newton-solver options. Valid (key, item) tuples are:
        ("atol", float), ("rtol", float), ("convergence_criterion", "str"),
        ("max_it", int), ("error_on_nonconvergence", bool), ("relaxation_parameter", float)
    """
    # Compute lame parameters
    plane_strain = physical_parameters.get("strain", False)
    E = physical_parameters.get("E", 1e3)
    nu = physical_parameters.get("nu", 0.1)
    mu_func, lambda_func = lame_parameters(plane_strain)
    mu = mu_func(E, nu)
    lmbda = lambda_func(E, nu)
    sigma = sigma_func(mu, lmbda)

    # Nitche parameters and variables
    theta = nitsche_parameters.get("theta", 1)
    gamma = nitsche_parameters.get("gamma", 1)

    (facet_marker, top_value, bottom_value) = mesh_data
    assert(facet_marker.dim == mesh.topology.dim - 1)

    # Normal vector pointing into plane (but outward of the body coming into contact)
    # Similar to computing the normal by finding the gap vector between two meshes
    n_vec = np.zeros(mesh.geometry.dim)
    n_vec[mesh.geometry.dim - 1] = -1
    n_2 = ufl.as_vector(n_vec)  # Normal of plane (projection onto other body)

    # Scaled Nitsche parameter
    h = ufl.CellDiameter(mesh)
    gamma_scaled = gamma * E / h

    # Mimicking the plane y=-plane_loc
    x = ufl.SpatialCoordinate(mesh)
    gap = x[mesh.geometry.dim - 1] + plane_loc
    g_vec = [i for i in range(mesh.geometry.dim)]
    g_vec[mesh.geometry.dim - 1] = gap

    V = _fem.VectorFunctionSpace(mesh, ("CG", 1))
    u = _fem.Function(V)
    v = ufl.TestFunction(V)

    metadata = {"quadrature_degree": quadrature_degree}
    dx = ufl.Measure("dx", domain=mesh)
    ds = ufl.Measure("ds", domain=mesh, metadata=metadata,
                     subdomain_data=facet_marker)
    a = ufl.inner(sigma(u), epsilon(v)) * dx
    zero = np.asarray([0, ] * mesh.geometry.dim, dtype=_PETSc.ScalarType)
    L = ufl.inner(_fem.Constant(mesh, zero), v) * dx

    # Derivation of one sided Nitsche with gap function
    n = ufl.FacetNormal(mesh)

    def sigma_n(v):
        # NOTE: Different normals, see summary paper
        return ufl.dot(sigma(v) * n, n_2)
    F = a - theta / gamma_scaled * sigma_n(u) * sigma_n(v) * ds(bottom_value) - L
    F += 1 / gamma_scaled * R_minus(sigma_n(u) + gamma_scaled * (gap - ufl.dot(u, n_2))) * \
        (theta * sigma_n(v) - gamma_scaled * ufl.dot(v, n_2)) * ds(bottom_value)

    # Compute corresponding Jacobian
    du = ufl.TrialFunction(V)
    q = sigma_n(u) + gamma_scaled * (gap - ufl.dot(u, n_2))
    J = ufl.inner(sigma(du), epsilon(v)) * ufl.dx - theta / gamma_scaled * sigma_n(du) * sigma_n(v) * ds(bottom_value)
    J += 1 / gamma_scaled * 0.5 * (1 - ufl.sign(q)) * (sigma_n(du) - gamma_scaled * ufl.dot(du, n_2)) * \
        (theta * sigma_n(v) - gamma_scaled * ufl.dot(v, n_2)) * ds(bottom_value)

    # Nitsche for Dirichlet, another theta-scheme.
    # https://doi.org/10.1016/j.cma.2018.05.024
    if nitsche_bc:
        disp_vec = np.zeros(mesh.geometry.dim)
        disp_vec[mesh.geometry.dim - 1] = vertical_displacement
        u_D = ufl.as_vector(disp_vec)
        F += - ufl.inner(sigma(u) * n, v) * ds(top_value)\
            - theta * ufl.inner(sigma(v) * n, u - u_D) * \
            ds(top_value) + gamma_scaled / h * ufl.inner(u - u_D, v) * ds(top_value)
        bcs = []
        J += - ufl.inner(sigma(du) * n, v) * ds(top_value)\
            - theta * ufl.inner(sigma(v) * n, du) * \
            ds(top_value) + gamma_scaled / h * ufl.inner(du, v) * ds(top_value)
    else:
        # strong Dirichlet boundary conditions
        def _u_D(x):
            values = np.zeros((mesh.geometry.dim, x.shape[1]))
            values[mesh.geometry.dim - 1] = vertical_displacement
            return values
        u_D = _fem.Function(V)
        u_D.interpolate(_u_D)
        u_D.name = "u_D"
        u_D.x.scatter_forward()
        tdim = mesh.topology.dim
        dirichlet_dofs = _fem.locate_dofs_topological(V, tdim - 1, facet_marker.find(top_value))
        bc = _fem.dirichletbc(u_D, dirichlet_dofs)
        bcs = [bc]

    # DEBUG: Write each step of Newton iterations
    # Create nonlinear problem and Newton solver
    # def form(self, x: _PETSc.Vec):
    #     x.ghostUpdate(addv=_PETSc.InsertMode.INSERT, mode=_PETSc.ScatterMode.FORWARD)
    #     self.i += 1
    #     xdmf.write_function(u, self.i)

    # setattr(_fem.petsc.NonlinearProblem, "form", form)

    problem = _fem.petsc.NonlinearProblem(F, u, bcs, J=J, jit_params=jit_params,
                                          form_compiler_params=form_compiler_params)

    # DEBUG: Write each step of Newton iterations
    # problem.i = 0
    # xdmf = _io.XDMFFile(mesh.comm, "results/tmp_sol.xdmf", "w")
    # xdmf.write_mesh(mesh)

    solver = _nls.petsc.NewtonSolver(mesh.comm, problem)
    null_space = rigid_motions_nullspace(V)
    solver.A.setNearNullSpace(null_space)

    # Set Newton solver options
    solver.atol = newton_options.get("atol", 1e-9)
    solver.rtol = newton_options.get("rtol", 1e-9)
    solver.convergence_criterion = newton_options.get("convergence_criterion", "incremental")
    solver.max_it = newton_options.get("max_it", 50)
    solver.error_on_nonconvergence = newton_options.get("error_on_nonconvergence", True)
    solver.relaxation_parameter = newton_options.get("relaxation_parameter", 0.8)

    def _u_initial(x):
        values = np.zeros((mesh.geometry.dim, x.shape[1]))
        values[-1] = -0.01 - plane_loc
        return values

    # Set initial_condition:
    u.interpolate(_u_initial)

    # Define solver and options
    ksp = solver.krylov_solver
    opts = _PETSc.Options()
    option_prefix = ksp.getOptionsPrefix()

    # Set PETSc options
    opts = _PETSc.Options()
    opts.prefixPush(option_prefix)
    for k, v in petsc_options.items():
        opts[k] = v
    opts.prefixPop()
    ksp.setFromOptions()

    # Solve non-linear problem
    _log.set_log_level(_log.LogLevel.INFO)
    num_dofs_global = V.dofmap.index_map_bs * V.dofmap.index_map.size_global
    with _common.Timer(f"{num_dofs_global} Solve Nitsche"):
        n, converged = solver.solve(u)
    u.x.scatter_forward()
    if solver.error_on_nonconvergence:
        assert(converged)
    print(f"{num_dofs_global}, Number of interations: {n:d}")
    return u