Ejemplo n.º 1
0
    def setActionForIndex( self, new_action, index ):
        idx = self.indexes[index]
        rec = self.records[idx]
        angle, throttle = Tub.get_angle_throttle(rec)
        old_action = [angle, throttle]
        if not np.array_equal( old_action, new_action ):
            if (rec["user/angle"] != new_action[0]) or (rec["user/throttle"] != new_action[1]):
                # Save the original values if not already done
                if "orig/angle" not in rec:
                    rec["orig/angle"] = rec["user/angle"]
                if "orig/throttle" not in rec:
                    rec["orig/throttle"] = rec["user/throttle"]

                rec["user/angle"] = new_action[0]
                rec["user/throttle"] = new_action[1]
                self.edit_list.add(idx)
                self.setDirty()
Ejemplo n.º 2
0
def sequence_train(cfg, tub_names, model_name, transfer_model, model_type,
                   continuous, aug):
    '''
    use the specified data in tub_names to train an artifical neural network
    saves the output trained model as model_name
    trains models which take sequence of images
    '''
    assert (not continuous)

    print("sequence of images training")

    kl = dk.utils.get_model_by_type(model_type=model_type, cfg=cfg)

    tubs = gather_tubs(cfg, tub_names)

    verbose = cfg.VEBOSE_TRAIN

    records = []

    for tub in tubs:
        record_paths = glob.glob(os.path.join(tub.path, 'record_*.json'))
        print("Tub:", tub.path, "has", len(record_paths), 'records')

        record_paths.sort(key=get_record_index)
        records += record_paths

    print('collating records')
    gen_records = {}

    for record_path in records:

        with open(record_path, 'r') as fp:
            json_data = json.load(fp)

        basepath = os.path.dirname(record_path)
        image_filename = json_data["cam/image_array"]
        image_path = os.path.join(basepath, image_filename)
        sample = {
            'record_path': record_path,
            "image_path": image_path,
            "json_data": json_data
        }

        sample["tub_path"] = basepath
        sample["index"] = get_image_index(image_filename)

        angle, throttle = Tub.get_angle_throttle(json_data)

        sample['target_output'] = np.array([angle, throttle])
        sample['angle'] = angle
        sample['throttle'] = throttle

        sample['img_data'] = None

        key = make_key(sample)

        gen_records[key] = sample

    print('collating sequences')

    sequences = []

    target_len = cfg.SEQUENCE_LENGTH
    look_ahead = False

    if model_type == "look_ahead":
        target_len = cfg.SEQUENCE_LENGTH * 2
        look_ahead = True

    for k, sample in gen_records.items():

        seq = []

        for i in range(target_len):
            key = make_next_key(sample, i)
            if key in gen_records:
                seq.append(gen_records[key])
            else:
                continue

        if len(seq) != target_len:
            continue

        sequences.append(seq)

    print("collated", len(sequences), "sequences of length", target_len)

    #shuffle and split the data
    train_data, val_data = train_test_split(sequences,
                                            test_size=(1 -
                                                       cfg.TRAIN_TEST_SPLIT))

    def generator(data, opt, batch_size=cfg.BATCH_SIZE):
        num_records = len(data)

        while True:
            #shuffle again for good measure
            random.shuffle(data)

            for offset in range(0, num_records, batch_size):
                batch_data = data[offset:offset + batch_size]

                if len(batch_data) != batch_size:
                    break

                b_inputs_img = []
                b_vec_in = []
                b_labels = []
                b_vec_out = []

                for seq in batch_data:
                    inputs_img = []
                    vec_in = []
                    labels = []
                    vec_out = []
                    num_images_target = len(seq)
                    iTargetOutput = -1
                    if opt['look_ahead']:
                        num_images_target = cfg.SEQUENCE_LENGTH
                        iTargetOutput = cfg.SEQUENCE_LENGTH - 1

                    for iRec, record in enumerate(seq):
                        #get image data if we don't already have it
                        if len(inputs_img) < num_images_target:
                            if record['img_data'] is None:
                                img_arr = load_scaled_image_arr(
                                    record['image_path'], cfg)
                                if img_arr is None:
                                    break
                                if aug:
                                    img_arr = augment_image(img_arr)

                                if cfg.CACHE_IMAGES:
                                    record['img_data'] = img_arr
                            else:
                                img_arr = record['img_data']

                            inputs_img.append(img_arr)

                        if iRec >= iTargetOutput:
                            vec_out.append(record['angle'])
                            vec_out.append(record['throttle'])
                        else:
                            vec_in.append(0.0)  #record['angle'])
                            vec_in.append(0.0)  #record['throttle'])

                    label_vec = seq[iTargetOutput]['target_output']

                    if look_ahead:
                        label_vec = np.array(vec_out)

                    labels.append(label_vec)

                    b_inputs_img.append(inputs_img)
                    b_vec_in.append(vec_in)

                    b_labels.append(labels)

                if look_ahead:
                    X = [np.array(b_inputs_img).reshape(batch_size,\
                        cfg.TARGET_H, cfg.TARGET_W, cfg.SEQUENCE_LENGTH)]
                    X.append(np.array(b_vec_in))
                    y = np.array(b_labels).reshape(
                        batch_size, (cfg.SEQUENCE_LENGTH + 1) * 2)
                else:
                    X = [np.array(b_inputs_img).reshape(batch_size,\
                        cfg.SEQUENCE_LENGTH, cfg.TARGET_H, cfg.TARGET_W, cfg.TARGET_D)]
                    y = np.array(b_labels).reshape(batch_size, 2)

                yield X, y

    opt = {'look_ahead': look_ahead, 'cfg': cfg}

    train_gen = generator(train_data, opt)
    val_gen = generator(val_data, opt)

    model_path = os.path.expanduser(model_name)

    total_records = len(sequences)
    total_train = len(train_data)
    total_val = len(val_data)

    print('train: %d, validation: %d' % (total_train, total_val))
    steps_per_epoch = total_train // cfg.BATCH_SIZE
    val_steps = total_val // cfg.BATCH_SIZE
    print('steps_per_epoch', steps_per_epoch)

    if steps_per_epoch < 2:
        raise Exception(
            "Too little data to train. Please record more records.")

    cfg.model_type = model_type

    go_train(kl, cfg, train_gen, val_gen, gen_records, model_name,
             steps_per_epoch, val_steps, continuous, verbose)
    ''' 
Ejemplo n.º 3
0
def collate_records(records, gen_records, opts):
    '''
    open all the .json records from records list passed in,
    read their contents,
    add them to a list of gen_records, passed in.
    use the opts dict to specify config choices
    '''

    new_records = {}

    for record_path in records:

        basepath = os.path.dirname(record_path)
        index = get_record_index(record_path)
        sample = {'tub_path': basepath, "index": index}

        key = make_key(sample)

        if key in gen_records:
            continue

        try:
            with open(record_path, 'r') as fp:
                json_data = json.load(fp)
        except:
            continue

        image_filename = json_data["cam/image_array"]
        image_path = os.path.join(basepath, image_filename)

        sample['record_path'] = record_path
        sample["image_path"] = image_path
        sample["json_data"] = json_data

        angle, throttle = Tub.get_angle_throttle(json_data)

        if opts['categorical']:
            angle = dk.utils.linear_bin(angle)
            throttle = dk.utils.linear_bin(
                throttle,
                N=20,
                offset=0,
                R=opts['cfg'].MODEL_CATEGORICAL_MAX_THROTTLE_RANGE)

        sample['angle'] = angle
        sample['throttle'] = throttle

        try:
            accl_x = float(json_data['imu/acl_x'])
            accl_y = float(json_data['imu/acl_y'])
            accl_z = float(json_data['imu/acl_z'])

            gyro_x = float(json_data['imu/gyr_x'])
            gyro_y = float(json_data['imu/gyr_y'])
            gyro_z = float(json_data['imu/gyr_z'])

            sample['imu_array'] = np.array(
                [accl_x, accl_y, accl_z, gyro_x, gyro_y, gyro_z])
        except:
            pass

        try:
            behavior_arr = np.array(json_data['behavior/one_hot_state_array'])
            sample["behavior_arr"] = behavior_arr
        except:
            pass

        sample['img_data'] = None

        # Initialise 'train' to False
        sample['train'] = False

        # We need to maintain the correct train - validate ratio across the dataset, even if continous training
        # so don't add this sample to the main records list (gen_records) yet.
        new_records[key] = sample

    # new_records now contains all our NEW samples
    # - set a random selection to be the training samples based on the ratio in CFG file
    shufKeys = list(new_records.keys())
    random.shuffle(shufKeys)
    trainCount = 0
    #  Ratio of samples to use as training data, the remaining are used for evaluation
    targetTrainCount = int(opts['cfg'].TRAIN_TEST_SPLIT * len(shufKeys))
    for key in shufKeys:
        new_records[key]['train'] = True
        trainCount += 1
        if trainCount >= targetTrainCount:
            break
    # Finally add all the new records to the existing list
    gen_records.update(new_records)
Ejemplo n.º 4
0
def vae_generator(cfg,
                  data,
                  batch_size,
                  isTrainSet=True,
                  min_records_to_train=1000,
                  aug=False,
                  aux=None,
                  pilot=False):

    num_records = len(data)

    while True:

        batch_data = []

        keys = list(data.keys())
        keys = shuffle(keys)

        for key in keys:

            if not key in data:
                continue

            _record = data[key]

            if _record['train'] != isTrainSet:
                continue

            batch_data.append(_record)

            if len(batch_data) == batch_size:
                inputs_img = []
                aux_out = []
                steering = []
                throttle = []

                for record in batch_data:
                    img_arr = None
                    #get image data if we don't already have it
                    if record['img_data'] is None:
                        img_arr = load_scaled_image_arr(
                            record['image_path'], cfg)

                        if img_arr is None:
                            break

                        if aug:
                            img_arr = augment_image(img_arr)

                        if cfg.CACHE_IMAGES:
                            record['img_data'] = img_arr
                    else:
                        img_arr = record['img_data']

                    if img_arr is None:
                        continue

                    inputs_img.append(img_arr)

                    if aux is not None:
                        if aux in record['json_data']:
                            aux_out.append(record['json_data'][aux])
                        else:
                            print("Missing aux data in: {}".format(record))
                            continue

                    st, th = Tub.get_angle_throttle(record['json_data'])
                    steering.append(st)
                    throttle.append(th)

                X = np.array(inputs_img).reshape(batch_size, cfg.IMAGE_H,
                                                 cfg.IMAGE_W, cfg.IMAGE_DEPTH)
                y = {'main_output': X}

                if pilot:
                    y['steering_output'] = np.array(steering)
                    y['throttle_output'] = np.array(throttle)

                if aux is not None:
                    aux_out = keras.utils.to_categorical(aux_out,
                                                         num_classes=7)
                    y['aux_output'] = aux_out

                yield X, y

                batch_data = []
Ejemplo n.º 5
0
def describe_tub( tub, stats=False, time_of_day=False, meta=[], img=False ):
    """ TODO: This should be generalized to return only user-requested meta data.
        TODO: Add a check for image sizes
    """

    # Handle differences between v1 and v2 Tubs
    # TODO: Add __len__ and base_path and manifest and version and a read_only flag to Tub v1
    if hasattr(tub, "get_num_records") and callable(tub.get_num_records):
        count = tub.get_num_records()
        version = "v1"
    else:
        count = len(tub)
        version = "v2"
    if hasattr(tub,"meta"):
        tub_meta = tub.meta
    else:
        tub_meta = tub.manifest.metadata
    if hasattr(tub,"path"):
        base_path = tub.path
    else:
        base_path = tub.base_path
    base_path = os.path.basename(base_path)

    loc = tub_meta.get("location", "NA")
    task = tub_meta.get("task", "NA")
    driver = tub_meta.get("driver", "NA")
    tod = tub_meta.get("start", None)
    throttle = tub_meta.get("JOYSTICK_MAX_THROTTLE", "NA")
    steering = tub_meta.get("JOYSTICK_STEERING_SCALE", "NA")
    if stats:
        recs = tub.gather_records()
        thr = []
        reward = []
        for rec in recs:
            with open(rec, 'r') as fp:
                json_data = json.load(fp)
            angle, one_thr = Tub.get_angle_throttle(json_data)
            thr.append( one_thr )
            if 'sim/reward' in json_data:
                reward.append( json_data['sim/reward'] )
            elif 'sim/info' in json_data:
                reward.append( json_data['sim/info']['reward'] )
        thr_m = np.mean(thr)
        thr_v = np.std(thr)
        st = "\t{:0.3}/{:0.3}".format( float(thr_m), float(thr_v) )
        if len(reward) > 0:
            st = "\t{:0.3}/{:0.3}/{:0.3}/{:0.3}".format( float(np.min(reward)), float(np.mean(reward)), float(np.std(reward)), float(np.max(reward)) )
        else:
            st = "\tNA"
    else:
        st = ""

    if time_of_day:
        if tod is not None:
            tod = int(tod)
            tod = datetime.fromtimestamp(tod).strftime('\t%H:%M')
        else:
            tod = "\t"
    else:
        tod = ""

    meta_st = ""
    for key in meta:
        if key in tub.inputs:
            meta_st += "\tInput"
        elif key in tub_meta:
            meta_st += "\t{}".format( tub_meta[key] )
        else:
            meta_st += "\tNo"

    img_st = ""
    if img:
        data = tub.get_record(1)
        img_array = data['cam/image_array']
        img_st = "\t{}".format( img_array.shape )

    print( "{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}{}{}{}{}".format( base_path, version, count, loc, task, driver, throttle, steering, st, tod, meta_st, img_st ) )
    return count
Ejemplo n.º 6
0
 def actionForIndex( self, index ):
     idx = self.indexes[index]
     rec = self.records[idx]
     angle, throttle = Tub.get_angle_throttle(rec)
     return [angle, throttle]