Ejemplo n.º 1
0
def experiment(variant):

    seed = variant['seed']
    n_parallel = variant['n_parallel']
    log_dir = variant['log_dir']
    setup(seed, n_parallel, log_dir)

    fast_learning_rate = variant['flr']

    fast_batch_size = variant[
        'fbs']  # 10 works for [0.1, 0.2], 20 doesn't improve much for [0,0.2]
    meta_batch_size = 20  # 10 also works, but much less stable, 20 is fairly stable, 40 is more stable
    max_path_length = 100
    num_grad_updates = 1
    meta_step_size = variant['mlr']

    env = TfEnv(normalize(PointEnvRandGoal()))

    policy = MAMLGaussianMLPPolicy(
        name="policy",
        env_spec=env.spec,
        grad_step_size=fast_learning_rate,
        hidden_nonlinearity=tf.nn.relu,
        hidden_sizes=variant['hidden_sizes'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = MAMLTRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=fast_batch_size,  # number of trajs for grad update
        max_path_length=max_path_length,
        meta_batch_size=meta_batch_size,
        num_grad_updates=num_grad_updates,
        n_itr=1000,
        use_maml=True,
        step_size=meta_step_size,
        plot=False,
    )

    algo.train()
Ejemplo n.º 2
0
def experiment(variant):

    seed = variant['seed']
    n_parallel = variant['n_parallel']
    log_dir = variant['log_dir']

    setup(seed, n_parallel, log_dir)
    expertDataLoc = variant['expertDataLoc']
    expertDataItr = variant['expertDataItr']

    fast_learning_rate = variant['flr']

    fast_batch_size = variant[
        'fbs']  # 10 works for [0.1, 0.2], 20 doesn't improve much for [0,0.2]
    meta_batch_size = 20  # 10 also works, but much less stable, 20 is fairly stable, 40 is more stable
    max_path_length = 150
    num_grad_updates = 1
    meta_step_size = variant['mlr']

    regionSize = variant['regionSize']

    if regionSize == '20X20':
        tasksFile = '/root/code/multiworld/multiworld/envs/goals/pickPlace_20X20_v1.pkl'

    else:
        assert regionSize == '60X30'
        tasksFile = '/root/code/multiworld/multiworld/envs/goals/PickPlace_60X30.pkl'

    tasks = pickle.load(open(tasksFile, 'rb'))
    envType = variant['envType']

    if envType == 'Push':
        baseEnv = SawyerPushEnv(tasks=tasks)
    else:
        assert (envType) == 'PickPlace'

        baseEnv = SawyerPickPlaceEnv(tasks=tasks)

    env = FinnMamlEnv(FlatGoalEnv(baseEnv, obs_keys=['state_observation']))
    env = TfEnv(NormalizedBoxEnv(env))
    policy = MAMLGaussianMLPPolicy(
        name="policy",
        env_spec=env.spec,
        grad_step_size=fast_learning_rate,
        hidden_nonlinearity=tf.nn.relu,
        hidden_sizes=variant['hidden_sizes'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = MAMLTRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=fast_batch_size,  # number of trajs for grad update
        max_path_length=max_path_length,
        meta_batch_size=meta_batch_size,
        num_grad_updates=num_grad_updates,
        n_itr=1000,
        use_maml=True,
        step_size=meta_step_size,
        plot=False,
        numExpertPolicies=20,
        expertDataInfo={
            'expert_loc': expertDataLoc,
            'expert_itr': expertDataItr
        })

    algo.train()
Ejemplo n.º 3
0
def experiment(variant):

    seed = variant['seed'] ; n_parallel = 1; log_dir = variant['log_dir']
    setup(seed, n_parallel , log_dir)

    diff_post_policy = variant['diff_post_policy']
    
    fast_batch_size = variant['fbs']  ; meta_batch_size = variant['mbs']

    adam_steps = variant['adam_steps'] ; max_path_length = variant['max_path_length']

    dagger = variant['dagger'] ; expert_policy_loc = variant['expert_policy_loc']

    ldim = variant['ldim'] ; init_flr =  variant['init_flr'] ; policyType = variant['policyType'] ; use_maesn = variant['use_maesn']
    EXPERT_TRAJ_LOCATION = variant['expertDataLoc']
    envType = variant['envType']

    tasksFile = '/home/code/multiworld/multiworld/envs/goals/' + variant['tasksFile']+'.pkl'
    #asksFile = '/home/russell/multiworld/multiworld/envs/goals/' + variant['tasksFile']+'.pkl'

    all_tasks = pickle.load(open(tasksFile, 'rb'))
    assert meta_batch_size<=len(all_tasks)
    tasks = all_tasks[:meta_batch_size]

    use_images = 'conv' in policyType



    if 'MultiDomain' in envType:
        baseEnv = Sawyer_MultiDomainEnv(tasks = tasks , image = use_images , mpl = max_path_length)

    elif 'MultiPush' in envType:
        baseEnv = SawyerMultiPushEnv(tasks = tasks , image = use_images , mpl = max_path_length)

    elif 'Push' == envType:       
        baseEnv = SawyerPushEnv(tasks = tasks , image = use_images , mpl = max_path_length)

    elif envType == 'sparsePush':
        baseEnv = SawyerPushEnv(tasks = tasks , image = use_images , mpl = max_path_length  , rewMode = 'l2Sparse')


    elif 'PickPlace' in envType:
        baseEnv = SawyerPickPlaceEnv( tasks = tasks , image = use_images , mpl = max_path_length)

    elif 'Door' in envType:
        baseEnv = SawyerDoorOpenEnv(tasks = tasks , image = use_images , mpl = max_path_length) 

    elif 'Coffee' in envType:
        baseEnv = SawyerCoffeeEnv(mpl = max_path_length)
        
    elif 'Ant' in envType:
        env = TfEnv(normalize(AntEnvRandGoalRing()))

    elif 'claw' in envType:
        env = TfEnv(DClawScrewRandGoal())

    else:
        assert True == False

    if envType in ['Push' , 'PickPlace' , 'Door' , 'SawyerMultiDomain' , 'Coffee' , 'SawyerMultiPush']:
        if use_images:
            obs_keys = ['img_observation']
        else:
            obs_keys = ['state_observation']
        env = TfEnv(NormalizedBoxEnv( FinnMamlEnv(FlatGoalEnv(baseEnv, obs_keys=obs_keys) , reset_mode = 'task')))    

    algoClass = MAMLIL
    baseline = LinearFeatureBaseline(env_spec = env.spec)

    load_policy = variant['load_policy']
    hidden_sizes = variant['hidden_sizes']



    if load_policy !=None:
        policy = None
        load_policy = variant['load_policy']
        if 'conv' in load_policy:
            baseline = ZeroBaseline(env_spec=env.spec)

    elif 'fullAda_Bias' in policyType:
       
        policy = fullAda_Bias_mamlPolicy(
                name="policy",
                env_spec=env.spec,
                grad_step_size=init_flr,
                hidden_nonlinearity=tf.nn.relu,
                hidden_sizes=hidden_sizes,
                init_flr_full=init_flr,
                latent_dim=ldim
            )

    elif 'biasAda_Bias' in policyType:

        policy = biasAda_Bias_mamlPolicy(
                name="policy",
                env_spec=env.spec,
                grad_step_size=init_flr,
                hidden_nonlinearity=tf.nn.relu,
                hidden_sizes=hidden_sizes,
                init_flr_full=init_flr,
                latent_dim=ldim
            )

    elif 'basic' in policyType:
        policy =  basic_mamlPolicy(
        name="policy",
        env_spec=env.spec,
        grad_step_size=init_flr,
        hidden_nonlinearity=tf.nn.relu,
        hidden_sizes=hidden_sizes,                  
        extra_input_dim=(0 if extra_input is "" else extra_input_dim),
    )
   

    elif 'conv' in policyType:

        baseline = ZeroBaseline(env_spec=env.spec)

        policy = conv_mamlPolicy(
        name="policy",
        latent_dim = ldim,
        policyType = policyType,
        env_spec=env.spec,
        init_flr=init_flr,

        hidden_nonlinearity=tf.nn.relu,
        hidden_sizes=hidden_sizes,                 
        extra_input_dim=(0 if extra_input is "" else extra_input_dim),
        )
    
    if diff_post_policy:
        post_policy = basic_policy(
                name="post_policy",
                env_spec=env.spec,
                hidden_nonlinearity=tf.nn.relu,
                hidden_sizes=hidden_sizes,
                latent_dim = ldim,
                std_modifier = post_std_modifier
            )
        assert 'biasAda_Bias' in policyType
    else:
        post_policy = None


    
    algo = algoClass(
        env=env,
        policy=policy,
        baseline=baseline,
        post_policy = post_policy,

        load_policy = load_policy,
        batch_size=fast_batch_size,  # number of trajs for alpha grad update
        max_path_length=max_path_length,
        meta_batch_size=meta_batch_size,  # number of tasks sampled for beta grad update
        num_grad_updates=num_grad_updates,  # number of alpha grad updates
        n_itr=50, 
        make_video=False,
        use_maml=True,
        use_pooled_goals=True,
        use_corr_term=use_corr_term,
        test_on_training_goals=test_on_training_goals,
        metalearn_baseline=False,
        # metalearn_baseline=False,
        limit_demos_num=limit_demos_num,
        test_goals_mult=1,
        step_size=meta_step_size,
        plot=False,
        beta_steps=beta_steps,
        adam_curve=None,
        adam_steps=adam_steps,
        pre_std_modifier=pre_std_modifier,
        l2loss_std_mult=l2loss_std_mult,
        importance_sampling_modifier=MOD_FUNC[''],
        post_std_modifier = post_std_modifier,
        expert_trajs_dir= EXPERT_TRAJ_LOCATION, 
        expert_trajs_suffix='',
        seed=seed,
        extra_input=extra_input,
        extra_input_dim=(0 if extra_input is "" else extra_input_dim),
        plotDirPrefix = None,
        latent_dim = ldim,
        dagger = dagger , 
        expert_policy_loc = expert_policy_loc
    )
    
    algo.train()
Ejemplo n.º 4
0
def experiment(variant):

    seed = variant['seed']
    n_parallel = variant['n_parallel']
    log_dir = variant['log_dir']
    setup(seed, n_parallel, log_dir)

    fast_learning_rate = variant['flr']

    fast_batch_size = variant[
        'fbs']  # 10 works for [0.1, 0.2], 20 doesn't improve much for [0,0.2]
    meta_batch_size = 20  # 10 also works, but much less stable, 20 is fairly stable, 40 is more stable
    max_path_length = 150
    num_grad_updates = 1
    meta_step_size = variant['mlr']

    tasksFile = '/root/code/multiworld/multiworld/envs/goals/Door_60X20X20.pkl'

    tasks = pickle.load(open(tasksFile, 'rb'))

    baseEnv = SawyerDoorOpenEnv(tasks=tasks)

    env = FinnMamlEnv(FlatGoalEnv(baseEnv, obs_keys=['state_observation']))

    env = TfEnv(NormalizedBoxEnv(env))

    policy = MAMLGaussianMLPPolicy(
        name="policy",
        env_spec=env.spec,
        grad_step_size=fast_learning_rate,
        hidden_nonlinearity=tf.nn.relu,
        hidden_sizes=variant['hidden_sizes'],
    )

    baseline = LinearFeatureBaseline(env_spec=env.spec)

    algo = MAMLTRPO(
        env=env,
        policy=policy,
        baseline=baseline,
        batch_size=fast_batch_size,  # number of trajs for grad update
        max_path_length=max_path_length,
        meta_batch_size=meta_batch_size,
        num_grad_updates=num_grad_updates,
        n_itr=1000,
        use_maml=True,
        step_size=meta_step_size,
        plot=False,
    )

    # import os

    # saveDir = variant['saveDir']

    # if os.path.isdir(saveDir)==False:
    #     os.mkdir(saveDir)

    # logger.set_snapshot_dir(saveDir)
    # #logger.set_snapshot_gap(20)
    # logger.add_tabular_output(saveDir+'progress.csv')

    algo.train()
Ejemplo n.º 5
0
def experiment(variant):

    seed = variant['seed']
    log_dir = variant['log_dir']
    n_parallel = variant['n_parallel']

    setup(seed, n_parallel, log_dir)

    init_file = variant['init_file']
    taskIndex = variant['taskIndex']
    n_itr = variant['n_itr']
    default_step = variant['default_step']
    policyType = variant['policyType']
    envType = variant['envType']

    tasksFile = path_to_multiworld + '/multiworld/envs/goals/' + variant[
        'tasksFile'] + '.pkl'
    tasks = pickle.load(open(tasksFile, 'rb'))

    max_path_length = variant['max_path_length']

    use_images = 'conv' in policyType

    if 'MultiDomain' in envType:
        baseEnv = Sawyer_MultiDomainEnv(tasks=tasks,
                                        image=use_images,
                                        mpl=max_path_length)

    elif 'Push' in envType:
        baseEnv = SawyerPushEnv(tasks=tasks,
                                image=use_images,
                                mpl=max_path_length)

    elif 'PickPlace' in envType:
        baseEnv = SawyerPickPlaceEnv(tasks=tasks,
                                     image=use_images,
                                     mpl=max_path_length)

    elif 'Door' in envType:
        baseEnv = SawyerDoorOpenEnv(tasks=tasks,
                                    image=use_images,
                                    mpl=max_path_length)

    elif 'Ant' in envType:
        env = TfEnv(normalize(AntEnvRandGoalRing()))

    elif 'Coffee' in envType:
        baseEnv = SawyerCoffeeEnv(mpl=max_path_length)

    else:
        raise AssertionError('')

    if envType in ['Push', 'PickPlace', 'Door']:
        if use_images:
            obs_keys = ['img_observation']
        else:
            obs_keys = ['state_observation']
        env = TfEnv(
            NormalizedBoxEnv(
                FinnMamlEnv(FlatGoalEnv(baseEnv, obs_keys=obs_keys),
                            reset_mode='idx')))

    baseline = ZeroBaseline(env_spec=env.spec)
    #baseline = LinearFeatureBaseline(env_spec = env.spec)
    batch_size = variant['batch_size']

    if policyType == 'fullAda_Bias':

        baseline = LinearFeatureBaseline(env_spec=env.spec)
        algo = vpg_fullADA(
            env=env,
            policy=None,
            load_policy=init_file,
            baseline=baseline,
            batch_size=batch_size,  # 2x
            max_path_length=max_path_length,
            n_itr=n_itr,
            #noise_opt = True,
            default_step=default_step,
            sampler_cls=VectorizedSampler,  # added by RK 6/19
            sampler_args=dict(n_envs=1),

            #reset_arg=np.asscalar(taskIndex),
            reset_arg=taskIndex,
            log_dir=log_dir)

    elif policyType == 'biasAda_Bias':

        algo = vpg_biasADA(
            env=env,
            policy=None,
            load_policy=init_file,
            baseline=baseline,
            batch_size=batch_size,  # 2x
            max_path_length=max_path_length,
            n_itr=n_itr,
            #noise_opt = True,
            default_step=default_step,
            sampler_cls=VectorizedSampler,  # added by RK 6/19
            sampler_args=dict(n_envs=1),
            #reset_arg=np.asscalar(taskIndex),
            reset_arg=taskIndex,
            log_dir=log_dir)

    elif policyType == 'basic':

        algo = vpg_basic(
            env=env,
            policy=None,
            load_policy=init_file,
            baseline=baseline,
            batch_size=batch_size,
            max_path_length=max_path_length,
            n_itr=n_itr,
            #step_size=10.0,
            sampler_cls=VectorizedSampler,  # added by RK 6/19
            sampler_args=dict(n_envs=1),
            reset_arg=taskIndex,
            optimizer=None,
            optimizer_args={
                'init_learning_rate': default_step,
                'tf_optimizer_args': {
                    'learning_rate': 0.5 * default_step
                },
                'tf_optimizer_cls': tf.train.GradientDescentOptimizer
            },
            log_dir=log_dir
            # extra_input="onehot_exploration", # added by RK 6/19
            # extra_input_dim=5, # added by RK 6/19
        )

    elif 'conv' in policyType:

        algo = vpg_conv(
            env=env,
            policy=None,
            load_policy=init_file,
            baseline=baseline,
            batch_size=batch_size,  # 2x
            max_path_length=max_path_length,
            n_itr=n_itr,
            sampler_cls=VectorizedSampler,  # added by RK 6/19
            sampler_args=dict(n_envs=1),
            #noise_opt = True,
            default_step=default_step,
            #reset_arg=np.asscalar(taskIndex),
            reset_arg=taskIndex,
            log_dir=log_dir)

    else:
        raise AssertionError(
            'Policy Type must be fullAda_Bias or biasAda_Bias')

    algo.train()
Ejemplo n.º 6
0
def experiment(variant):


  seed = variant['seed'] ; n_parallel = variant['n_parallel'] ; log_dir = variant['log_dir']
  setup(seed, n_parallel, log_dir)
  fast_learning_rate = variant['flr'] ; fast_batch_size = variant['fbs'] ; meta_batch_size = variant['mbs']
  envClass = variant['envClass']

  beta_steps = 1
  adam_steps = variant['adam_steps']
  updateMode = 'vec'
  adam_curve = None
  
  env_option = ''
  
  extra_input = "onehot_exploration" # "onehot_exploration" "gaussian_exploration"
  # extra_input = None
  extra_input_dim = 5

  
  num_grad_updates = 1
  meta_step_size = 0.01
  pre_std_modifier = 1.0
  post_std_modifier_train = 0.00001
  post_std_modifier_test = 0.00001
  l2loss_std_mult = 1.0
  ism = ''
 
  limit_demos_num = 40  # 40
  test_goals_mult = 1
  bas_lr = 0.01 # baseline learning rate
  momentum=0.5
  bas_hnl = tf.nn.relu
  hidden_layers = (100,100)

  basas = 60 # baseline adam steps
  use_corr_term = True
  # seeds = [1,2,3,4,5,6,7]  #,2,3,4,5,6,7,8] #, 2,3,4,5,6,7,8]
  
  use_maml = True
  test_on_training_goals = False
  env = None
  
  if envClass == 'Ant':
    env = TfEnv(normalize(AntEnvRandGoalRing())) 
    max_path_length = 200  
    EXPERT_TRAJ_LOCATION_DICT = '/root/code/rllab/saved_expert_traj/Expert_trajs_dense_ant/'

  elif envClass == 'SawyerPusher':
   
    baseEnv = FlatGoalEnv(SawyerPushEnv(tasks=None), obs_keys=['state_observation'])
    env = TfEnv(NormalizedBoxEnv(FinnMamlEnv( baseEnv , reset_mode = 'task')))
    max_path_length = 150
    EXPERT_TRAJ_LOCATION_DICT = '/root/code/maml_gps/saved_expert_traj/Expert_trajs_sawyer_pusher/'

  else:
    raise AssertionError('Env must be either Ant or SawyerPusher')

 
  policy = MAMLGaussianMLPPolicy(
      name="policy",
      env_spec=env.spec,
      grad_step_size=fast_learning_rate,
      hidden_nonlinearity=tf.nn.relu,
      hidden_sizes=(100, 100),
      std_modifier=pre_std_modifier,
      # metalearn_baseline=(bas == "MAMLGaussianMLP"),
      extra_input_dim=(0 if extra_input is None else extra_input_dim),
      updateMode = updateMode,
      num_tasks = meta_batch_size
  )
 
  
  baseline = LinearFeatureBaseline(env_spec=env.spec)
 
  algo = MAMLIL(
      env=env,
      policy=policy,
      #policy=None,
      #oad_policy='/home/alvin/maml_rl/data/local/R7-IL-0918/R7_IL_200_40_1_1_dem40_ei5_as50_basl_1809_04_27/itr_24.pkl',
      baseline=baseline,
      batch_size=fast_batch_size,  # number of trajs for alpha grad update
      max_path_length=max_path_length,
      meta_batch_size=meta_batch_size,  # number of tasks sampled for beta grad update
      num_grad_updates=num_grad_updates,  # number of alpha grad updates
      n_itr=200, #100
      make_video=False,
      use_maml=use_maml,
      use_pooled_goals=True,
      use_corr_term=use_corr_term,
      test_on_training_goals=test_on_training_goals,
      metalearn_baseline=False,
      # metalearn_baseline=False,
      limit_demos_num=limit_demos_num,
      test_goals_mult=test_goals_mult,
      step_size=meta_step_size,
      plot=False,
      beta_steps=beta_steps,
      adam_curve=adam_curve,
      adam_steps=adam_steps,
      pre_std_modifier=pre_std_modifier,
      l2loss_std_mult=l2loss_std_mult,
      importance_sampling_modifier=MOD_FUNC[ism],
      post_std_modifier_train=post_std_modifier_train,
      post_std_modifier_test=post_std_modifier_test,
      expert_trajs_dir=EXPERT_TRAJ_LOCATION_DICT,
      #[env_option+"."+mode+goals_suffix],
      expert_trajs_suffix="",
      seed=seed,
      extra_input=extra_input,
      extra_input_dim=(0 if extra_input is None else extra_input_dim),
      updateMode = updateMode
  )
  algo.train()