Ejemplo n.º 1
0
    elif model == 2:
        pic50, hill = params
    if hill <= hill_lower or hill > hill_upper or pic50 <= pic50_lower:
        return 1e9
    else:
        predicted = dr.dose_response_model(concs, hill, dr.pic50_to_ic50(pic50))
        return np.sum((responses-predicted)**2)




data_file = "../input/crumb_data.csv"
run_all = True

dr.setup(data_file)
drugs_to_run, channels_to_run = dr.list_drug_channel_options(run_all)

all_figs_dir = "../output/all_best_fits/"
if not os.path.exists(all_figs_dir):
    os.makedirs(all_figs_dir)

#drug = "Amitriptyline"
#channel = "Cav1.2"
#drug = "Amiodarone"
#channel = "hERG"

num_models = 2


def do_plot(drug_channel):
    global concs, responses
Ejemplo n.º 2
0
                    help='plot data points on top of predicted curves',
                    default=False)
parser.add_argument(
    "--save-pdf",
    action='store_true',
    help=
    'save dose-response curves figure as pdf (in addition to png), but the file will probably be massive',
    default=False)
args = parser.parse_args()

dr.define_model(args.model)
temperature = 1
num_params = dr.num_params

dr.setup(args.data_file)
drugs_to_run, channels_to_run = dr.list_drug_channel_options(args.all)

num_x_pts = 50
alpha = 0.002  # this is the lowest value I've found that actually shows anything

for drug, channel in it.product(drugs_to_run, channels_to_run):

    try:
        num_expts, experiment_numbers, experiments = dr.load_crumb_data(
            drug, channel)
    except:
        print "\nCan't load experimental data for {} + {} --- skipping\n".format(
            drug, channel)
        continue
    drug, channel, chain_file, images_dir = dr.nonhierarchical_chain_file_and_figs_dir(
        args.model, drug, channel, temperature)
Ejemplo n.º 3
0
        hill = 1
    elif model == 2:
        pic50, hill = params
    if hill <= hill_lower or hill > hill_upper or pic50 <= pic50_lower:
        return 1e9
    else:
        predicted = dr.dose_response_model(concs, hill,
                                           dr.pic50_to_ic50(pic50))
        return np.sum((responses - predicted)**2)


data_file = "../input/crumb_data.csv"
run_all = True

dr.setup(data_file)
drugs_to_run, channels_to_run = dr.list_drug_channel_options(run_all)

all_figs_dir = "../output/all_best_fits/"
if not os.path.exists(all_figs_dir):
    os.makedirs(all_figs_dir)

#drug = "Amitriptyline"
#channel = "Cav1.2"
#drug = "Amiodarone"
#channel = "hERG"

num_models = 2


def do_plot(drug_channel):
    global concs, responses