Ejemplo n.º 1
0
class DostN:
    def __init__(self):
        self.db = DB()
        self.tokenizer = RegexTokenizer()
        self.model = FastTextSocialNetworkModel(tokenizer=self.tokenizer)
        self.tokens = self.tokenizer.split('всё очень плохо')

    def ready_msg(self, messages, nnID):
        results = self.model.predict(messages, k=2)
        sentiments = []
        for message, sentiment in zip(messages, results):
            sentiments.append(sentiment)
        try:
            pos = sentiments[0]['positive']
            self.db.setPos(nnID, pos)
        except Exception as e:
            print(e, 22)
            pos = 0
            self.db.setPos(nnID, pos)
        try:
            neg = sentiments[0]['negative']
            self.db.setNegative(nnID, neg)
        except Exception as e:
            print(e, 29)
            neg = 0
            self.db.setNegative(nnID, neg)
        try:
            ne = sentiments[0]['neutral']
            self.db.setNeutral(nnID, ne)
        except Exception as e:
            print(e, 36)
            ne = 0
            self.db.setNeutral(nnID, ne)
        return (sentiments)
Ejemplo n.º 2
0
 def parse_senstiment(self, text):
     tokenizer = RegexTokenizer()
     tokens = tokenizer.split('всё очень плохо') # хз
     model = FastTextSocialNetworkModel(tokenizer=tokenizer)
     
     return model.predict([text], k=2)[0]
     
Ejemplo n.º 3
0
def graph():
    file = filedialog.askopenfilename(filetypes=(("Text files", "*.txt"),
                                                 ("all files", "*.*")))
    f = open(file)
    raw = f.read()
    sentences = nltk.sent_tokenize(raw)
    command = 'download'
    arguments = ['fasttext-social-network-model']
    if command == 'download':
        downloader = DataDownloader()
        for filename in arguments:
            if filename not in AVAILABLE_FILES:
                raise ValueError(f'Unknown package: {filename}')
            source, destination = AVAILABLE_FILES[filename]
            destination_path: str = os.path.join(DATA_BASE_PATH, destination)
            if os.path.exists(destination_path):
                continue
            downloader.download(source=source, destination=destination)
    else:
        raise ValueError('Unknown command')

    import dostoevsky
    from dostoevsky.tokenization import RegexTokenizer
    from dostoevsky.models import FastTextSocialNetworkModel

    tokenizer = RegexTokenizer()
    tokens = tokenizer.split(
        'всё очень плохо')  # [('всё', None), ('очень', None), ('плохо', None)]

    model = FastTextSocialNetworkModel(tokenizer=tokenizer)

    messages = sentences

    results = model.predict(messages, k=2)

    for message, sentiment in zip(messages, results):
        positive_values_all = [
            sentiment.get('positive')
            for message, sentiment in zip(messages, results)
        ]
        positive_values = [
            0.0 if value == None else value for value in positive_values_all
        ]

        negative_values_all = [
            sentiment.get('negative')
            for message, sentiment in zip(messages, results)
        ]
        negative_values = [
            0.0 if value == None else value for value in negative_values_all
        ]
        summary = (len(negative_values))

    n_value = np.array(negative_values)
    p_value = np.array(positive_values)
    counts_value = np.arange(summary)
    plt.plot(counts_value, p_value, n_value)
    plt.show()
Ejemplo n.º 4
0
def begin():
    file = filedialog.askopenfilename(filetypes=(("Text files", "*.txt"),
                                                 ("all files", "*.*")))
    f = open(file)
    raw = f.read()
    sentences = nltk.sent_tokenize(raw)
    command = 'download'
    arguments = ['fasttext-social-network-model']
    if command == 'download':
        downloader = DataDownloader()
        for filename in arguments:
            if filename not in AVAILABLE_FILES:
                raise ValueError(f'Unknown package: {filename}')
            source, destination = AVAILABLE_FILES[filename]
            destination_path: str = os.path.join(DATA_BASE_PATH, destination)
            if os.path.exists(destination_path):
                continue
            downloader.download(source=source, destination=destination)
    else:
        raise ValueError('Unknown command')

    tokenizer = RegexTokenizer()
    tokens = tokenizer.split(
        'всё очень плохо')  # [('всё', None), ('очень', None), ('плохо', None)]

    model = FastTextSocialNetworkModel(tokenizer=tokenizer)

    messages = sentences

    results = model.predict(messages, k=2)

    for message, sentiment in zip(messages, results):

        analysis_line = '\n', message, '\n', '->', '\n', sentiment, '\n'

        text.insert(END, analysis_line)
Ejemplo n.º 5
0
from dostoevsky.tokenization import RegexTokenizer
from dostoevsky.models import FastTextSocialNetworkModel

tokenizer = RegexTokenizer()
tokens = tokenizer.split(
    'всё очень плохо')  # [('всё', None), ('очень', None), ('плохо', None)]

model = FastTextSocialNetworkModel(tokenizer=tokenizer)

message = ['Волосы у девушки просто огонь!!! Красота!!!']

results = model.predict(message, k=len(message))

for message, sentiment in zip(message, results):
    # привет -> {'speech': 1.0000100135803223, 'skip': 0.0020607432816177607}
    # люблю тебя!! -> {'positive': 0.9886782765388489, 'skip': 0.005394937004894018}
    # малолетние дебилы -> {'negative': 0.9525841474533081, 'neutral': 0.13661839067935944}]
    print(message, '->', sentiment)