def plot_results(results):
    '''
    Takes results fo the form:
        {centre-of-mass-energy: {
            channel : {
                variable : {
                    fit_variable : {
                        test : { sample : []},
                        }
                    }
                }
            }
        }
    '''
    global options
    output_base = 'plots/fit_checks/chi2'
    for COMEnergy in results.keys():
        tmp_result_1 = results[COMEnergy]
        for channel in tmp_result_1.keys():
            tmp_result_2 = tmp_result_1[channel]
            for variable in tmp_result_2.keys():
                tmp_result_3 = tmp_result_2[variable]
                for fit_variable in tmp_result_3.keys():
                    tmp_result_4 = tmp_result_3[fit_variable]
                    # histograms should be {sample: {test : histogram}}
                    histograms = {}
                    for test, chi2 in tmp_result_4.iteritems():
                        for sample in chi2.keys():
                            if not histograms.has_key(sample):
                                histograms[sample] = {}
                            # reverse order of test and sample
                            histograms[sample][test] = value_tuplelist_to_hist(
                                chi2[sample], bin_edges_vis[variable])
                    for sample in histograms.keys():
                        hist_properties = Histogram_properties()
                        hist_properties.name = sample.replace('+',
                                                              '') + '_chi2'
                        hist_properties.title = '$\\chi^2$ distribution for fit output (' + sample + ')'
                        hist_properties.x_axis_title = '$' + latex_labels.variables_latex[
                            variable] + '$ [TeV]'
                        hist_properties.y_axis_title = '$\chi^2 = \\left({N_{fit}} - N_{{exp}}\\right)^2$'
                        hist_properties.set_log_y = True
                        hist_properties.y_limits = (1e-20, 1e20)
                        path = output_base + '/' + COMEnergy + 'TeV/' + channel + '/' + variable + '/' + fit_variable + '/'
                        if options.test:
                            path = output_base + '/test/'

                        measurements = {}
                        for test, histogram in histograms[sample].iteritems():
                            measurements[test.replace('_', ' ')] = histogram
                        compare_measurements(
                            {},
                            measurements,
                            show_measurement_errors=False,
                            histogram_properties=hist_properties,
                            save_folder=path,
                            save_as=['pdf'])
def draw_regularisation_histograms( h_truth, h_measured, h_response, h_fakes = None, h_data = None ):
    global method, variable, output_folder, output_formats, test
    k_max = h_measured.nbins()
    unfolding = Unfolding( h_truth,
                           h_measured,
                           h_response,
                           h_fakes,
                           method = method,
                           k_value = k_max,
                           error_treatment = 4,
                           verbose = 1 )
    
    RMSerror, MeanResiduals, RMSresiduals, Chi2 = unfolding.test_regularisation ( h_data, k_max )

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'chi2_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = '$\chi^2$ for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = '$\chi^2$'
    histogram_properties.set_log_y = True
    make_plot(Chi2, 'chi2', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'RMS_error_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = 'Mean error for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = 'Mean error'
    make_plot(RMSerror, 'RMS', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'RMS_residuals_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = 'RMS of residuals for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = 'RMS of residuals'
    if test == 'closure':
        histogram_properties.set_log_y = True
    make_plot(RMSresiduals, 'RMSresiduals', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)

    histogram_properties = Histogram_properties()
    histogram_properties.name = 'mean_residuals_%s_channel_%s' % ( channel, variable )
    histogram_properties.title = 'Mean of residuals for $%s$ in %s channel, %s test' % ( variables_latex[variable], channel, test )
    histogram_properties.x_axis_title = '$i$'
    histogram_properties.y_axis_title = 'Mean of residuals'
    make_plot(MeanResiduals, 'MeanRes', histogram_properties, output_folder, output_formats, draw_errorbar = True, draw_legend = False)
def compare( central_mc, expected_result = None, measured_result = None, results = {}, variable = 'MET',
             channel = 'electron', bin_edges = [] ):
    global input_file, plot_location, ttbar_xsection, luminosity, centre_of_mass, method, test, log_plots

    channel_label = ''
    if channel == 'electron':
        channel_label = 'e+jets, $\geq$4 jets'
    elif channel == 'muon':
        channel_label = '$\mu$+jets, $\geq$4 jets'
    else:
        channel_label = '$e, \mu$ + jets combined, $\geq$4 jets'

    if test == 'data':
        title_template = 'CMS Preliminary, $\mathcal{L} = %.1f$ fb$^{-1}$  at $\sqrt{s}$ = %d TeV \n %s'
        title = title_template % ( luminosity / 1000., centre_of_mass, channel_label )
    else:
        title_template = 'CMS Simulation at $\sqrt{s}$ = %d TeV \n %s'
        title = title_template % ( centre_of_mass, channel_label )

    models = {latex_labels.measurements_latex['MADGRAPH'] : central_mc}
    if expected_result and test == 'data':
        models.update({'fitted data' : expected_result})
        # scale central MC to lumi
        nEvents = input_file.EventFilter.EventCounter.GetBinContent( 1 )  # number of processed events 
        lumiweight = ttbar_xsection * luminosity / nEvents
        central_mc.Scale( lumiweight )
    elif expected_result:
        models.update({'expected' : expected_result})
    if measured_result and test != 'data':
        models.update({'measured' : measured_result})
    
    measurements = collections.OrderedDict()
    for key, value in results['k_value_results'].iteritems():
        measurements['k = ' + str( key )] = value
    
    # get some spread in x    
    graphs = spread_x( measurements.values(), bin_edges )
    for key, graph in zip( measurements.keys(), graphs ):
        measurements[key] = graph

    histogram_properties = Histogram_properties()
    histogram_properties.name = channel + '_' + variable + '_' + method + '_' + test
    histogram_properties.title = title + ', ' + latex_labels.b_tag_bins_latex['2orMoreBtags']
    histogram_properties.x_axis_title = '$' + latex_labels.variables_latex[variable] + '$'
    histogram_properties.y_axis_title = r'Events'
#     histogram_properties.y_limits = [0, 0.03]
    histogram_properties.x_limits = [bin_edges[0], bin_edges[-1]]

    if log_plots:
        histogram_properties.set_log_y = True
        histogram_properties.name += '_log'

    compare_measurements( models, measurements, show_measurement_errors = True,
                          histogram_properties = histogram_properties,
                          save_folder = plot_location, save_as = ['pdf'] )
def plot_results ( results ):
    '''
    Takes results fo the form:
        {centre-of-mass-energy: {
            channel : {
                variable : {
                    fit_variable : {
                        test : { sample : []},
                        }
                    }
                }
            }
        }
    '''
    global options
    output_base = 'plots/fit_checks/chi2'
    for COMEnergy in results.keys():
        tmp_result_1 = results[COMEnergy]
        for channel in tmp_result_1.keys():
            tmp_result_2 = tmp_result_1[channel]
            for variable in tmp_result_2.keys():
                tmp_result_3 = tmp_result_2[variable]
                for fit_variable in tmp_result_3.keys():
                    tmp_result_4 = tmp_result_3[fit_variable]
                    # histograms should be {sample: {test : histogram}}
                    histograms = {}
                    for test, chi2 in tmp_result_4.iteritems():
                        for sample in chi2.keys():
                            if not histograms.has_key(sample):
                                histograms[sample] = {}
                            # reverse order of test and sample
                            histograms[sample][test] = value_tuplelist_to_hist(chi2[sample], bin_edges_vis[variable])
                    for sample in histograms.keys():
                        hist_properties = Histogram_properties()
                        hist_properties.name = sample.replace('+', '') + '_chi2'
                        hist_properties.title = '$\\chi^2$ distribution for fit output (' + sample + ')'
                        hist_properties.x_axis_title = '$' + latex_labels.variables_latex[variable] + '$ [TeV]'
                        hist_properties.y_axis_title = '$\chi^2 = \\left({N_{fit}} - N_{{exp}}\\right)^2$'
                        hist_properties.set_log_y = True
                        hist_properties.y_limits = (1e-20, 1e20)
                        path = output_base + '/' + COMEnergy + 'TeV/' + channel + '/' + variable + '/' + fit_variable + '/'
                        if options.test:
                            path = output_base + '/test/'
                        
                        measurements = {}
                        for test, histogram in histograms[sample].iteritems():
                            measurements[test.replace('_',' ')] = histogram
                        compare_measurements({}, 
                                             measurements, 
                                             show_measurement_errors = False, 
                                             histogram_properties = hist_properties, 
                                             save_folder = path, 
                                             save_as = ['pdf'])
def plotHistograms(
		histogram_files, 
		var_to_plot,
		output_folder):
	'''
	'''
	global measurement_config

	weightBranchSignalRegion  = 'EventWeight * PUWeight * BJetWeight'
	weightBranchControlRegion = 'EventWeight'

	# Names of QCD regions to use
	qcd_data_region             = ''
	qcd_data_region_electron    = 'QCD non iso e+jets'
	qcd_data_region_muon        = 'QCD non iso mu+jets 1p5to3'

	sr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/Ref selection/AnalysisVariables'
	sr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/Ref selection/AnalysisVariables'
	cr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/{}/AnalysisVariables'.format(qcd_data_region_electron)
	cr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/{}/AnalysisVariables'.format(qcd_data_region_muon)
	
	print "Trees : "
	print "\t {}".format(sr_e_tree)
	print "\t {}".format(sr_mu_tree)
	print "\t {}".format(cr_e_tree)
	print "\t {}".format(cr_mu_tree)

	histogram_files_electron            = dict(histogram_files)
	histogram_files_electron['data']    = measurement_config.data_file_electron
	histogram_files_electron['QCD']     = measurement_config.electron_QCD_MC_trees

	histogram_files_muon                = dict(histogram_files)
	histogram_files_muon['data']        = measurement_config.data_file_muon
	histogram_files_muon['QCD']         = measurement_config.muon_QCD_MC_trees

	signal_region_hists = {}
	control_region_hists = {}

	for var in var_to_plot:
		selectionSignalRegion = '{} >= 0'.format(var)

		# Print all the weights applied to this plot 
		print "Variable : {}".format(var)
		print "Weight applied : {}".format(weightBranchSignalRegion)
		print "Selection applied : {}".format(selectionSignalRegion)

		histograms_electron = get_histograms_from_trees( 
			trees = [sr_e_tree], 
			branch = var, 
			weightBranch = weightBranchSignalRegion + ' * ElectronEfficiencyCorrection', 
			files = histogram_files_electron, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)
		histograms_muon = get_histograms_from_trees( 
			trees = [sr_mu_tree], 
			branch = var, 
			weightBranch = weightBranchSignalRegion + ' * MuonEfficiencyCorrection', 
			files = histogram_files_muon, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)
		histograms_electron_QCDControlRegion = get_histograms_from_trees( 
			trees = [cr_e_tree], 
			branch = var, 
			weightBranch = weightBranchControlRegion, 
			files = histogram_files_electron, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)
		histograms_muon_QCDControlRegion     = get_histograms_from_trees( 
			trees = [cr_mu_tree], 
			branch = var, 
			weightBranch = weightBranchControlRegion, 
			files = histogram_files_muon, 
			nBins = 20, 
			xMin = control_plots_bins[var][0], 
			xMax = control_plots_bins[var][-1], 
			selection = selectionSignalRegion 
		)

		# Combine the electron and muon histograms
		for sample in histograms_electron:
			h_electron = histograms_electron[sample][sr_e_tree]
			h_muon     = histograms_muon[sample][sr_mu_tree]
			h_qcd_electron = histograms_electron_QCDControlRegion[sample][cr_e_tree]
			h_qcd_muon     = histograms_muon_QCDControlRegion[sample][cr_mu_tree]

			signal_region_hists[sample] = h_electron + h_muon
			control_region_hists[sample] = h_qcd_electron + h_qcd_muon

		# NORMALISE TO LUMI
		prepare_histograms( 
			signal_region_hists, 
			scale_factor = measurement_config.luminosity_scale 
		)
		prepare_histograms( 
			control_region_hists, 
			scale_factor = measurement_config.luminosity_scale 
		)

		# BACKGROUND SUBTRACTION FOR QCD
		qcd_from_data = None
		qcd_from_data = clean_control_region( 
			control_region_hists,
			subtract = ['TTJet', 'V+Jets', 'SingleTop'] 
		)

		# DATA DRIVEN QCD
		nBins = signal_region_hists['QCD'].GetNbinsX()
		n, error = signal_region_hists['QCD'].integral(0,nBins+1,error=True)
		n_qcd_predicted_mc_signal = ufloat( n, error)

		n, error = control_region_hists['QCD'].integral(0,nBins+1,error=True)
		n_qcd_predicted_mc_control = ufloat( n, error)

		n, error = qcd_from_data.integral(0,nBins+1,error=True)
		n_qcd_control_region = ufloat( n, error)

		dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control
		qcd_from_data.Scale( dataDrivenQCDScale.nominal_value )
		signal_region_hists['QCD'] = qcd_from_data

		# PLOTTING
		histograms_to_draw = []
		histogram_lables   = []
		histogram_colors   = []

		histograms_to_draw = [
			# signal_region_hists['data'], 
			# qcd_from_data,
			# signal_region_hists['V+Jets'],
			signal_region_hists['SingleTop'],
			signal_region_hists['ST_s'],
			signal_region_hists['ST_t'],
			signal_region_hists['ST_tW'],
			signal_region_hists['STbar_t'],
			signal_region_hists['STbar_tW'],
			# signal_region_hists['TTJet'],
		]
		histogram_lables   = [
			'data',
			# 'QCD', 
			# 'V+Jets', 
			# 'Single-Top', 
			'ST-s', 
			'ST-t', 
			'ST-tW', 
			'STbar-t', 
			'STbar-tW', 
			# samples_latex['TTJet'],
		]
		histogram_colors   = [
			colours['data'], 
			# colours['QCD'], 
			# colours['V+Jets'], 
			# colours['Single-Top'],
			colours['ST_s'],
			colours['ST_t'],
			colours['ST_tW'],
			colours['STbar_t'],
			colours['STbar_tW'], 
			# colours['TTJet'],
		]

		# Find maximum y of samples
		maxData = max( list(signal_region_hists['SingleTop'].y()) )
		y_limits = [0, maxData * 1.5]
		log_y = False
		if log_y:
			y_limits = [0.1, maxData * 100 ]

		# Lumi title of plots
		title_template = '%.1f fb$^{-1}$ (%d TeV)'
		title = title_template % ( measurement_config.new_luminosity/1000., measurement_config.centre_of_mass_energy )
		x_axis_title = '$%s$ [GeV]' % variables_latex[var]
		y_axis_title = 'Events/(%i GeV)' % binWidth(control_plots_bins[var])

		# More histogram settings to look semi decent
		histogram_properties = Histogram_properties()
		histogram_properties.name                   = var + '_with_ratio'
		histogram_properties.title                  = title
		histogram_properties.x_axis_title           = x_axis_title
		histogram_properties.y_axis_title           = y_axis_title
		histogram_properties.x_limits               = control_plots_bins[var]
		histogram_properties.y_limits               = y_limits
		histogram_properties.y_max_scale            = 1.4
		histogram_properties.xerr                   = None
		histogram_properties.emptybins              = True
		histogram_properties.additional_text        = channel_latex['combined']
		histogram_properties.legend_location        = ( 0.9, 0.73 )
		histogram_properties.cms_logo_location      = 'left'
		histogram_properties.preliminary            = True
		histogram_properties.set_log_y              = log_y
		histogram_properties.legend_color           = False
		histogram_properties.ratio_y_limits     	= [0.1,1.9]
		if log_y: histogram_properties.name += '_logy'
		loc = histogram_properties.legend_location
		histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )

		make_data_mc_comparison_plot( 
			histograms_to_draw, 
			histogram_lables, 
			histogram_colors,
			histogram_properties, 
			save_folder = output_folder,
			show_ratio = True, 
		)

		histogram_properties.name                   = var + '_ST_TTJet_Shape'
		if log_y: histogram_properties.name += '_logy'
		histogram_properties.y_axis_title           = 'Normalised Distribution'
		histogram_properties.y_limits               = [0,0.5]

		make_shape_comparison_plot( 
			shapes = [
				signal_region_hists['TTJet'],
				signal_region_hists['ST_t'],
				signal_region_hists['ST_tW'],
				signal_region_hists['ST_s'],
				signal_region_hists['STbar_t'],
				signal_region_hists['STbar_tW'], 
			],
			names = [
				samples_latex['TTJet'],
				'Single-Top t channel',
				'Single-Top tW channel',
				'Single-Top s channel',
				'Single-AntiTop t channel',
				'Single-AntiTop tW channel',
			],
			colours = [
				colours['TTJet'],
				colours['ST_t'],
				colours['ST_tW'],
				colours['ST_s'],
				colours['STbar_t'],
				colours['STbar_tW'],
			],
			histogram_properties = histogram_properties,
			save_folder = output_folder,
			fill_area = False,
			add_error_bars = False,
			save_as = ['pdf'],
			make_ratio = True, 
			alpha = 1,
		)
		print_output(signal_region_hists, output_folder, var, 'combined')
	return
Ejemplo n.º 6
0
def plotHistograms(histogram_files, var_to_plot, output_folder):
    '''
	'''
    global measurement_config

    weightBranchSignalRegion = 'EventWeight * PUWeight * BJetWeight'
    weightBranchControlRegion = 'EventWeight'

    # Names of QCD regions to use
    qcd_data_region = ''
    qcd_data_region_electron = 'QCD non iso e+jets'
    qcd_data_region_muon = 'QCD non iso mu+jets 1p5to3'

    sr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/Ref selection/AnalysisVariables'
    sr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/Ref selection/AnalysisVariables'
    cr_e_tree = 'TTbar_plus_X_analysis/EPlusJets/{}/AnalysisVariables'.format(
        qcd_data_region_electron)
    cr_mu_tree = 'TTbar_plus_X_analysis/MuPlusJets/{}/AnalysisVariables'.format(
        qcd_data_region_muon)

    print "Trees : "
    print "\t {}".format(sr_e_tree)
    print "\t {}".format(sr_mu_tree)
    print "\t {}".format(cr_e_tree)
    print "\t {}".format(cr_mu_tree)

    histogram_files_electron = dict(histogram_files)
    histogram_files_electron['data'] = measurement_config.data_file_electron
    histogram_files_electron['QCD'] = measurement_config.electron_QCD_MC_trees

    histogram_files_muon = dict(histogram_files)
    histogram_files_muon['data'] = measurement_config.data_file_muon
    histogram_files_muon['QCD'] = measurement_config.muon_QCD_MC_trees

    signal_region_hists = {}
    control_region_hists = {}

    for var in var_to_plot:
        selectionSignalRegion = '{} >= 0'.format(var)

        # Print all the weights applied to this plot
        print "Variable : {}".format(var)
        print "Weight applied : {}".format(weightBranchSignalRegion)
        print "Selection applied : {}".format(selectionSignalRegion)

        histograms_electron = get_histograms_from_trees(
            trees=[sr_e_tree],
            branch=var,
            weightBranch=weightBranchSignalRegion +
            ' * ElectronEfficiencyCorrection',
            files=histogram_files_electron,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)
        histograms_muon = get_histograms_from_trees(
            trees=[sr_mu_tree],
            branch=var,
            weightBranch=weightBranchSignalRegion +
            ' * MuonEfficiencyCorrection',
            files=histogram_files_muon,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)
        histograms_electron_QCDControlRegion = get_histograms_from_trees(
            trees=[cr_e_tree],
            branch=var,
            weightBranch=weightBranchControlRegion,
            files=histogram_files_electron,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)
        histograms_muon_QCDControlRegion = get_histograms_from_trees(
            trees=[cr_mu_tree],
            branch=var,
            weightBranch=weightBranchControlRegion,
            files=histogram_files_muon,
            nBins=20,
            xMin=control_plots_bins[var][0],
            xMax=control_plots_bins[var][-1],
            selection=selectionSignalRegion)

        # Combine the electron and muon histograms
        for sample in histograms_electron:
            h_electron = histograms_electron[sample][sr_e_tree]
            h_muon = histograms_muon[sample][sr_mu_tree]
            h_qcd_electron = histograms_electron_QCDControlRegion[sample][
                cr_e_tree]
            h_qcd_muon = histograms_muon_QCDControlRegion[sample][cr_mu_tree]

            signal_region_hists[sample] = h_electron + h_muon
            control_region_hists[sample] = h_qcd_electron + h_qcd_muon

        # NORMALISE TO LUMI
        prepare_histograms(signal_region_hists,
                           scale_factor=measurement_config.luminosity_scale)
        prepare_histograms(control_region_hists,
                           scale_factor=measurement_config.luminosity_scale)

        # BACKGROUND SUBTRACTION FOR QCD
        qcd_from_data = None
        qcd_from_data = clean_control_region(
            control_region_hists, subtract=['TTJet', 'V+Jets', 'SingleTop'])

        # DATA DRIVEN QCD
        nBins = signal_region_hists['QCD'].GetNbinsX()
        n, error = signal_region_hists['QCD'].integral(0,
                                                       nBins + 1,
                                                       error=True)
        n_qcd_predicted_mc_signal = ufloat(n, error)

        n, error = control_region_hists['QCD'].integral(0,
                                                        nBins + 1,
                                                        error=True)
        n_qcd_predicted_mc_control = ufloat(n, error)

        n, error = qcd_from_data.integral(0, nBins + 1, error=True)
        n_qcd_control_region = ufloat(n, error)

        dataDrivenQCDScale = n_qcd_predicted_mc_signal / n_qcd_predicted_mc_control
        qcd_from_data.Scale(dataDrivenQCDScale.nominal_value)
        signal_region_hists['QCD'] = qcd_from_data

        # PLOTTING
        histograms_to_draw = []
        histogram_lables = []
        histogram_colors = []

        histograms_to_draw = [
            # signal_region_hists['data'],
            # qcd_from_data,
            # signal_region_hists['V+Jets'],
            signal_region_hists['SingleTop'],
            signal_region_hists['ST_s'],
            signal_region_hists['ST_t'],
            signal_region_hists['ST_tW'],
            signal_region_hists['STbar_t'],
            signal_region_hists['STbar_tW'],
            # signal_region_hists['TTJet'],
        ]
        histogram_lables = [
            'data',
            # 'QCD',
            # 'V+Jets',
            # 'Single-Top',
            'ST-s',
            'ST-t',
            'ST-tW',
            'STbar-t',
            'STbar-tW',
            # samples_latex['TTJet'],
        ]
        histogram_colors = [
            colours['data'],
            # colours['QCD'],
            # colours['V+Jets'],
            # colours['Single-Top'],
            colours['ST_s'],
            colours['ST_t'],
            colours['ST_tW'],
            colours['STbar_t'],
            colours['STbar_tW'],
            # colours['TTJet'],
        ]

        # Find maximum y of samples
        maxData = max(list(signal_region_hists['SingleTop'].y()))
        y_limits = [0, maxData * 1.5]
        log_y = False
        if log_y:
            y_limits = [0.1, maxData * 100]

        # Lumi title of plots
        title_template = '%.1f fb$^{-1}$ (%d TeV)'
        title = title_template % (measurement_config.new_luminosity / 1000.,
                                  measurement_config.centre_of_mass_energy)
        x_axis_title = '$%s$ [GeV]' % variables_latex[var]
        y_axis_title = 'Events/(%i GeV)' % binWidth(control_plots_bins[var])

        # More histogram settings to look semi decent
        histogram_properties = Histogram_properties()
        histogram_properties.name = var + '_with_ratio'
        histogram_properties.title = title
        histogram_properties.x_axis_title = x_axis_title
        histogram_properties.y_axis_title = y_axis_title
        histogram_properties.x_limits = control_plots_bins[var]
        histogram_properties.y_limits = y_limits
        histogram_properties.y_max_scale = 1.4
        histogram_properties.xerr = None
        histogram_properties.emptybins = True
        histogram_properties.additional_text = channel_latex['combined']
        histogram_properties.legend_location = (0.9, 0.73)
        histogram_properties.cms_logo_location = 'left'
        histogram_properties.preliminary = True
        histogram_properties.set_log_y = log_y
        histogram_properties.legend_color = False
        histogram_properties.ratio_y_limits = [0.1, 1.9]
        if log_y: histogram_properties.name += '_logy'
        loc = histogram_properties.legend_location
        histogram_properties.legend_location = (loc[0], loc[1] + 0.05)

        make_data_mc_comparison_plot(
            histograms_to_draw,
            histogram_lables,
            histogram_colors,
            histogram_properties,
            save_folder=output_folder,
            show_ratio=True,
        )

        histogram_properties.name = var + '_ST_TTJet_Shape'
        if log_y: histogram_properties.name += '_logy'
        histogram_properties.y_axis_title = 'Normalised Distribution'
        histogram_properties.y_limits = [0, 0.5]

        make_shape_comparison_plot(
            shapes=[
                signal_region_hists['TTJet'],
                signal_region_hists['ST_t'],
                signal_region_hists['ST_tW'],
                signal_region_hists['ST_s'],
                signal_region_hists['STbar_t'],
                signal_region_hists['STbar_tW'],
            ],
            names=[
                samples_latex['TTJet'],
                'Single-Top t channel',
                'Single-Top tW channel',
                'Single-Top s channel',
                'Single-AntiTop t channel',
                'Single-AntiTop tW channel',
            ],
            colours=[
                colours['TTJet'],
                colours['ST_t'],
                colours['ST_tW'],
                colours['ST_s'],
                colours['STbar_t'],
                colours['STbar_tW'],
            ],
            histogram_properties=histogram_properties,
            save_folder=output_folder,
            fill_area=False,
            add_error_bars=False,
            save_as=['pdf'],
            make_ratio=True,
            alpha=1,
        )
        print_output(signal_region_hists, output_folder, var, 'combined')
    return
def make_ttbarReco_plot(
    channel,
    x_axis_title,
    y_axis_title,
    signal_region_tree,
    control_region_tree,
    branchName,
    name_prefix,
    x_limits,
    nBins,
    use_qcd_data_region=False,
    y_limits=[],
    y_max_scale=1.2,
    rebin=1,
    legend_location=(0.98, 0.78),
    cms_logo_location='right',
    log_y=False,
    legend_color=False,
    ratio_y_limits=[0.3, 1.7],
    normalise=False,
):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    # Input files, normalisations, tree/region names
    qcd_data_region = ''
    title = title_template % (measurement_config.new_luminosity / 1000.,
                              measurement_config.centre_of_mass_energy)
    normalisation = None
    if channel == 'electron':
        histogram_files['data'] = measurement_config.data_file_electron_trees
        histogram_files[
            'QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[
                category]
        if normalise_to_fit:
            normalisation = normalisations_electron[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCDConversions'
    if channel == 'muon':
        histogram_files['data'] = measurement_config.data_file_muon_trees
        histogram_files[
            'QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[
                category]
        if normalise_to_fit:
            normalisation = normalisations_muon[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCD non iso mu+jets ge3j'

    histograms = get_histograms_from_trees(
        trees=[signal_region_tree, control_region_tree],
        branch=branchName,
        weightBranch='1',
        files=histogram_files,
        nBins=nBins,
        xMin=x_limits[0],
        xMax=x_limits[-1])

    selection = 'SolutionCategory == 0'
    histogramsNoSolution = get_histograms_from_trees(
        trees=[signal_region_tree],
        branch=branchName,
        weightBranch='1',
        selection=selection,
        files=histogram_files,
        nBins=nBins,
        xMin=x_limits[0],
        xMax=x_limits[-1])

    selection = 'SolutionCategory == 1'
    histogramsCorrect = get_histograms_from_trees(trees=[signal_region_tree],
                                                  branch=branchName,
                                                  weightBranch='1',
                                                  selection=selection,
                                                  files=histogram_files,
                                                  nBins=nBins,
                                                  xMin=x_limits[0],
                                                  xMax=x_limits[-1])

    selection = 'SolutionCategory == 2'
    histogramsNotSL = get_histograms_from_trees(trees=[signal_region_tree],
                                                branch=branchName,
                                                weightBranch='1',
                                                selection=selection,
                                                files=histogram_files,
                                                nBins=nBins,
                                                xMin=x_limits[0],
                                                xMax=x_limits[-1])

    selection = 'SolutionCategory == 3'
    histogramsNotReco = get_histograms_from_trees(trees=[signal_region_tree],
                                                  branch=branchName,
                                                  weightBranch='1',
                                                  selection=selection,
                                                  files=histogram_files,
                                                  nBins=nBins,
                                                  xMin=x_limits[0],
                                                  xMax=x_limits[-1])

    selection = 'SolutionCategory > 3'
    histogramsWrong = get_histograms_from_trees(trees=[signal_region_tree],
                                                branch=branchName,
                                                weightBranch='1',
                                                selection=selection,
                                                files=histogram_files,
                                                nBins=nBins,
                                                xMin=x_limits[0],
                                                xMax=x_limits[-1])

    # Split histograms up into signal/control (?)
    signal_region_hists = {}
    inclusive_control_region_hists = {}
    for sample in histograms.keys():
        signal_region_hists[sample] = histograms[sample][signal_region_tree]
        if use_qcd_data_region:
            inclusive_control_region_hists[sample] = histograms[sample][
                control_region_tree]

    prepare_histograms(histograms,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsNoSolution,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsCorrect,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsNotSL,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsNotReco,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)
    prepare_histograms(histogramsWrong,
                       rebin=1,
                       scale_factor=measurement_config.luminosity_scale)

    qcd_from_data = signal_region_hists['QCD']

    # Which histograms to draw, and properties
    histograms_to_draw = [
        signal_region_hists['data'], qcd_from_data,
        signal_region_hists['V+Jets'], signal_region_hists['SingleTop'],
        histogramsNoSolution['TTJet'][signal_region_tree],
        histogramsNotSL['TTJet'][signal_region_tree],
        histogramsNotReco['TTJet'][signal_region_tree],
        histogramsWrong['TTJet'][signal_region_tree],
        histogramsCorrect['TTJet'][signal_region_tree]
    ]
    histogram_lables = [
        'data',
        'QCD',
        'V+Jets',
        'Single-Top',
        samples_latex['TTJet'] + ' - no solution',
        samples_latex['TTJet'] + ' - not SL',
        samples_latex['TTJet'] + ' - not reconstructible',
        samples_latex['TTJet'] + ' - wrong reco',
        samples_latex['TTJet'] + ' - correct',
    ]
    histogram_colors = [
        'black', 'yellow', 'green', 'magenta', 'black', 'burlywood',
        'chartreuse', 'blue', 'red'
    ]

    histogram_properties = Histogram_properties()
    histogram_properties.name = name_prefix + b_tag_bin
    if category != 'central':
        histogram_properties.name += '_' + category
    histogram_properties.title = title
    histogram_properties.x_axis_title = x_axis_title
    histogram_properties.y_axis_title = y_axis_title
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits
    histogram_properties.y_max_scale = y_max_scale
    histogram_properties.xerr = None
    # workaround for rootpy issue #638
    histogram_properties.emptybins = True
    if b_tag_bin:
        histogram_properties.additional_text = channel_latex[
            channel] + ', ' + b_tag_bins_latex[b_tag_bin]
    else:
        histogram_properties.additional_text = channel_latex[channel]
    histogram_properties.legend_location = legend_location
    histogram_properties.cms_logo_location = cms_logo_location
    histogram_properties.preliminary = preliminary
    histogram_properties.set_log_y = log_y
    histogram_properties.legend_color = legend_color
    if ratio_y_limits:
        histogram_properties.ratio_y_limits = ratio_y_limits

    if normalise_to_fit:
        histogram_properties.mc_error = get_normalisation_error(normalisation)
        histogram_properties.mc_errors_label = 'fit uncertainty'
    else:
        histogram_properties.mc_error = mc_uncertainty
        histogram_properties.mc_errors_label = 'MC unc.'

    # Actually draw histograms
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables,
        histogram_colors,
        histogram_properties,
        save_folder=output_folder,
        show_ratio=False,
        normalise=normalise,
    )
    histogram_properties.name += '_with_ratio'
    loc = histogram_properties.legend_location
    # adjust legend location as it is relative to canvas!
    histogram_properties.legend_location = (loc[0], loc[1] + 0.05)
    make_data_mc_comparison_plot(
        histograms_to_draw,
        histogram_lables,
        histogram_colors,
        histogram_properties,
        save_folder=output_folder,
        show_ratio=True,
        normalise=normalise,
    )
def drawHistograms( dictionaryOfHistograms, uncertaintyBand, config, channel, variable ) :
    histograms_to_draw = [
        dictionaryOfHistograms['Data'],
        dictionaryOfHistograms['QCD'],
        dictionaryOfHistograms['V+Jets'],
        dictionaryOfHistograms['SingleTop'],
        dictionaryOfHistograms['TTJet'],
    ]

    histogram_lables   = [
        'data',
        'QCD', 
        'V+jets', 
        'single-top', 
        samples_latex['TTJet'],
    ]

    histogram_colors   = [
        colours['data'], 
        colours['QCD'], 
        colours['V+Jets'], 
        colours['Single-Top'], 
        colours['TTJet'],
    ]


    # Find maximum y of samples
    maxData = max( list(histograms_to_draw[0].y()) )
    y_limits = [0, maxData * 1.4]

    # More histogram settings to look semi decent
    histogram_properties = Histogram_properties()
    histogram_properties.name                   = '{channel}_{variable}'.format(channel = channel, variable=variable)
    histogram_properties.title                  = '$%.1f$ fb$^{-1}$ (%d TeV)' % ( config.new_luminosity/1000., config.centre_of_mass_energy )
    histogram_properties.x_axis_title           = variables_latex[variable]
    histogram_properties.y_axis_title           = 'Events'
    if variable in ['HT', 'ST', 'MET', 'WPT', 'lepton_pt']:
        histogram_properties.y_axis_title       = 'Events / {binWidth} GeV'.format( binWidth=binWidth )
        histogram_properties.x_axis_title           = '{variable} (GeV)'.format( variable = variables_latex[variable] )


    histogram_properties.x_limits               = [ reco_bin_edges[0], reco_bin_edges[-1] ]
    histogram_properties.y_limits               = y_limits
    histogram_properties.y_max_scale            = 1.3
    histogram_properties.xerr                   = None
    # workaround for rootpy issue #638
    histogram_properties.emptybins              = True
    histogram_properties.additional_text        = channel_latex[channel.lower()]
    histogram_properties.legend_location        = ( 0.9, 0.73 )
    histogram_properties.cms_logo_location      = 'left'
    histogram_properties.preliminary            = True
    # histogram_properties.preliminary            = False
    histogram_properties.set_log_y              = False
    histogram_properties.legend_color           = False
    histogram_properties.ratio_y_limits     = [0.5, 1.5]

    # Draw histogram with ratio plot
    histogram_properties.name += '_with_ratio'
    loc = histogram_properties.legend_location
    # adjust legend location as it is relative to canvas!
    histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )

    make_data_mc_comparison_plot( 
        histograms_to_draw, 
        histogram_lables, 
        histogram_colors,
        histogram_properties, 
        save_folder = 'plots/control_plots_with_systematic/',
        show_ratio = True, 
        normalise = False,
        systematics_for_ratio = uncertaintyBand,
        systematics_for_plot = uncertaintyBand,
    )

    histogram_properties.set_log_y = True
    histogram_properties.y_limits = [0.1, y_limits[-1]*100 ]
    histogram_properties.legend_location = ( 0.9, 0.9 )
    histogram_properties.name += '_logY'
    make_data_mc_comparison_plot( 
        histograms_to_draw, 
        histogram_lables, 
        histogram_colors,
        histogram_properties, 
        save_folder = 'plots/control_plots_with_systematic/logY/',
        show_ratio = True, 
        normalise = False,
        systematics_for_ratio = uncertaintyBand,
        systematics_for_plot = uncertaintyBand,
    )    
Ejemplo n.º 9
0
                histogram_colors = [
                    'black', 'yellow', 'green', 'magenta', 'red'
                ]

                histogram_properties = Histogram_properties()
                histogram_properties.name = 'QCD_nonIso_%s_%s' % (channel, var)
                if control_region == 'QCDConversions':
                    histogram_properties.name = 'QCD_Conversions_%s_%s' % (
                        channel, var)
                if category != 'central':
                    histogram_properties.name += '_' + category
                if channel == 'EPlusJets':
                    histogram_properties.title = e_title
                elif channel == 'MuPlusJets':
                    histogram_properties.title = mu_title

                eventsPerBin = (xMax - xMin) / nBins
                histogram_properties.x_axis_title = '%s [GeV]' % (
                    control_plots_latex[var])
                histogram_properties.y_axis_title = 'Events/(%.2g GeV)' % (
                    eventsPerBin)

                histogram_properties.set_log_y = True
                histogram_properties.name += '_with_ratio'
                make_data_mc_comparison_plot(histograms_to_draw,
                                             histogram_lables,
                                             histogram_colors,
                                             histogram_properties,
                                             save_folder=output_folder,
                                             show_ratio=False)
def make_ttbarReco_plot( channel, x_axis_title, y_axis_title,
              signal_region_tree,
              control_region_tree,
              branchName,
              name_prefix, x_limits, nBins,
              use_qcd_data_region = False,
              y_limits = [],
              y_max_scale = 1.2,
              rebin = 1,
              legend_location = ( 0.98, 0.78 ), cms_logo_location = 'right',
              log_y = False,
              legend_color = False,
              ratio_y_limits = [0.3, 1.7],
              normalise = False,
              ):
    global output_folder, measurement_config, category, normalise_to_fit
    global preliminary, norm_variable, sum_bins, b_tag_bin, histogram_files

    # Input files, normalisations, tree/region names
    qcd_data_region = ''
    title = title_template % ( measurement_config.new_luminosity / 1000., measurement_config.centre_of_mass_energy )
    normalisation = None
    if channel == 'electron':
        histogram_files['data'] = measurement_config.data_file_electron_trees
        histogram_files['QCD'] = measurement_config.electron_QCD_MC_category_templates_trees[category]
        if normalise_to_fit:
            normalisation = normalisations_electron[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCDConversions'
    if channel == 'muon':
        histogram_files['data'] = measurement_config.data_file_muon_trees
        histogram_files['QCD'] = measurement_config.muon_QCD_MC_category_templates_trees[category]
        if normalise_to_fit:
            normalisation = normalisations_muon[norm_variable]
        if use_qcd_data_region:
            qcd_data_region = 'QCD non iso mu+jets ge3j'

    histograms = get_histograms_from_trees( trees = [signal_region_tree, control_region_tree], branch = branchName, weightBranch = '1', files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 0'
    histogramsNoSolution = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 1'
    histogramsCorrect = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 2'
    histogramsNotSL = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory == 3'
    histogramsNotReco = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    selection = 'SolutionCategory > 3'
    histogramsWrong = get_histograms_from_trees( trees = [signal_region_tree], branch = branchName, weightBranch = '1', selection = selection, files = histogram_files, nBins = nBins, xMin = x_limits[0], xMax = x_limits[-1] )

    # Split histograms up into signal/control (?)
    signal_region_hists = {}
    inclusive_control_region_hists = {}
    for sample in histograms.keys():
        signal_region_hists[sample] = histograms[sample][signal_region_tree]
        if use_qcd_data_region:
            inclusive_control_region_hists[sample] = histograms[sample][control_region_tree]

    prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNoSolution, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsCorrect, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNotSL, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsNotReco, rebin = 1, scale_factor = measurement_config.luminosity_scale )
    prepare_histograms( histogramsWrong, rebin = 1, scale_factor = measurement_config.luminosity_scale )

    qcd_from_data = signal_region_hists['QCD']

    # Which histograms to draw, and properties
    histograms_to_draw = [signal_region_hists['data'], qcd_from_data,
                          signal_region_hists['V+Jets'],
                          signal_region_hists['SingleTop'],
                          histogramsNoSolution['TTJet'][signal_region_tree],
                          histogramsNotSL['TTJet'][signal_region_tree],
                          histogramsNotReco['TTJet'][signal_region_tree],
                          histogramsWrong['TTJet'][signal_region_tree],
                          histogramsCorrect['TTJet'][signal_region_tree]
                          ]
    histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', 
                        samples_latex['TTJet'] + ' - no solution',
                        samples_latex['TTJet'] + ' - not SL',
                        samples_latex['TTJet'] + ' - not reconstructible',
                        samples_latex['TTJet'] + ' - wrong reco',
                        samples_latex['TTJet'] + ' - correct',
                        ]
    histogram_colors = ['black', 'yellow', 'green', 'magenta',
                        'black',
                        'burlywood',
                        'chartreuse',
                        'blue',
                        'red'
                        ]

    histogram_properties = Histogram_properties()
    histogram_properties.name = name_prefix + b_tag_bin
    if category != 'central':
        histogram_properties.name += '_' + category
    histogram_properties.title = title
    histogram_properties.x_axis_title = x_axis_title
    histogram_properties.y_axis_title = y_axis_title
    histogram_properties.x_limits = x_limits
    histogram_properties.y_limits = y_limits
    histogram_properties.y_max_scale = y_max_scale
    histogram_properties.xerr = None
    # workaround for rootpy issue #638
    histogram_properties.emptybins = True
    if b_tag_bin:
        histogram_properties.additional_text = channel_latex[channel] + ', ' + b_tag_bins_latex[b_tag_bin]
    else:
        histogram_properties.additional_text = channel_latex[channel]
    histogram_properties.legend_location = legend_location
    histogram_properties.cms_logo_location = cms_logo_location
    histogram_properties.preliminary = preliminary
    histogram_properties.set_log_y = log_y
    histogram_properties.legend_color = legend_color
    if ratio_y_limits:
        histogram_properties.ratio_y_limits = ratio_y_limits

    if normalise_to_fit:
        histogram_properties.mc_error = get_normalisation_error( normalisation )
        histogram_properties.mc_errors_label = 'fit uncertainty'
    else:
        histogram_properties.mc_error = mc_uncertainty
        histogram_properties.mc_errors_label = 'MC unc.'

    # Actually draw histograms
    make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
                                 histogram_properties, save_folder = output_folder,
                                 show_ratio = False, normalise = normalise,
                                 )
    histogram_properties.name += '_with_ratio'
    loc = histogram_properties.legend_location
    # adjust legend location as it is relative to canvas!
    histogram_properties.legend_location = ( loc[0], loc[1] + 0.05 )
    make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
                                 histogram_properties, save_folder = output_folder,
                                 show_ratio = True, normalise = normalise,
                                 )
                print bins,
                print xMin, xMax, nBins
                histograms = get_histograms_from_trees( trees = [controlTree], branch = var, weightBranch = 'EventWeight', files = histogram_files, nBins = nBins, xMin = xMin, xMax = xMax )
                prepare_histograms( histograms, rebin = 1, scale_factor = measurement_config.luminosity_scale )
                
                histograms_to_draw = [histograms['data'][controlTree], histograms['QCD'][controlTree],
                                      histograms['V+Jets'][controlTree],
                                      histograms['SingleTop'][controlTree], histograms['TTJet'][controlTree]]
                histogram_lables = ['data', 'QCD', 'V+Jets', 'Single-Top', samples_latex['TTJet']]
                histogram_colors = ['black', 'yellow', 'green', 'magenta', 'red']
                
                histogram_properties = Histogram_properties()
                histogram_properties.name = 'QCD_nonIso_%s_%s' % (channel, var)
                if control_region == 'QCDConversions' :
                    histogram_properties.name = 'QCD_Conversions_%s_%s' % (channel, var)
                if category != 'central':
                    histogram_properties.name += '_' + category
                if channel == 'EPlusJets':
                    histogram_properties.title = e_title
                elif channel == 'MuPlusJets':
                    histogram_properties.title = mu_title

                eventsPerBin = (xMax - xMin) / nBins
                histogram_properties.x_axis_title = '%s [GeV]' % ( control_plots_latex[var] )
                histogram_properties.y_axis_title = 'Events/(%.2g GeV)' % (eventsPerBin)
              
                histogram_properties.set_log_y = True
                histogram_properties.name += '_with_ratio'
                make_data_mc_comparison_plot( histograms_to_draw, histogram_lables, histogram_colors,
                                             histogram_properties, save_folder = output_folder, show_ratio = False )