def predict(video_path): polyfit = Polyfit() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) loader = tf.train.import_meta_graph( './model_test/lane-conv--490--299.meta') loader.restore(sess, './model_test/lane-conv--490--299') y = tf.get_collection('pred_network')[0] graph = tf.get_default_graph() input_x = graph.get_operation_by_name('x_input').outputs[0] keep_prob = graph.get_operation_by_name('prob').outputs[0] cap = cv2.VideoCapture(video_path) ret, frame = cap.read() while ret: ret, frame = cap.read() # cv2.imshow("img",frame) img_arr = cv2.resize(frame, dsize=(107, 60)) img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2GRAY) imgarr = np.reshape(img_arr, newshape=[1, 60, 107, 1]) predict = sess.run(y, feed_dict={ input_x: imgarr, keep_prob: 1.0 })[0] predict = np.uint8(np.where(predict == 0, 0, 255)) predict = cv2.resize(predict, dsize=(320, 180)) warped = warp(predict) left_fit, right_fit, vars = polyfit.poly_fit_slide(warped) print(left_fit) result, offset, Radius, k_error = draw( cv2.resize(frame, dsize=(320, 180)), warped, left_fit, right_fit) cv2.imshow('warped', warped) cv2.imshow('res', result) cv2.waitKey(1)
's') # 交易日停市 except: print(key, '日期:', date, '今日停市') compute_allfund(date) else: total = 0 for key in hold_stocks.keys(): if hold_stocks[key] != 0: tmp = ts.get_hist_data(key, start=date, end=date) tmp = tmp.reset_index(drop=False) try: if (tmp['close'].iloc[0] - buyprice[key] ) / buyprice[key] <= -0.05: # 0.05止损 trading(key, date, hold_stocks[key], tmp['close'].iloc[0], 's') print('止损!', date, '股票代码:', key) else: total += tmp['close'].iloc[0] * hold_stocks[key] except: print(key, '日期:', date, '今日停市') print(date, '持仓资金为:', round(total, 2)) compute_allfund(date) if __name__ == '__main__': setting(50000, 0.003) main_proc() # draw_line.draw(date_list, fund_list, '每日资金情况图') draw_line.draw(date_list, rate_list, '持有期收益率情况图') info_table.to_csv('个股持有情况分析.csv', encoding='gb18030')
# cv2.waitKey(0) # Video process # VideoProcee(input_path='./test5.avi',output_path='./lane_detect.avi',timeF=1,fps=30) # train() # prediction() # data_read() sess = tf.Session() polyfit = Polyfit() sess.run(tf.global_variables_initializer()) loader = tf.train.import_meta_graph('./model_test/lane-conv---99.meta') loader.restore(sess, './model_test/lane-conv---99') y = tf.get_collection('pred_network')[0] graph = tf.get_default_graph() input_x = graph.get_operation_by_name('x_input').outputs[0] keep_prob = graph.get_operation_by_name('prob').outputs[0] cap = cv2.VideoCapture('./test5.avi') ret, frame = cap.read() while ret: s = time.time() ret, frame = cap.read() imgarr = cv2.resize(frame, dsize=(107, 60)) predict = cnn_lane(sess, imgarr) predict = np.uint8(np.where(predict == 0, 0, 255)) predict = cv2.resize(predict, dsize=(320, 180)) warped = warp(predict) left_fit, right_fit, vars = polyfit.poly_fit_slide(warped) result, offset, Radius, k_error = draw( cv2.resize(frame, dsize=(320, 180)), warped, left_fit, right_fit) print('Total;', time.time() - s) cv2.imshow('warped', warped) cv2.imshow('res', result) cv2.waitKey(1)