Ejemplo n.º 1
0
    def test_dct2Random(self):
        torch.manual_seed(10)
        M = 4
        N = 8
        x = torch.empty(M, N, dtype=dtype).uniform_(0, 10.0)

        golden_value = discrete_spectral_transform.dct2_N(x).data.numpy()
        print("2D golden_value")
        print(golden_value)

        # test cpu using N-FFT
        #pdb.set_trace()
        custom = dct.DCT2(algorithm='N')
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test cpu using 2N-FFT
        #pdb.set_trace()
        custom = dct.DCT2(algorithm='2N')
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test cpu using dct_lee
        #pdb.set_trace()
        custom = dct_lee.DCT2()
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test gpu 
        custom = dct.DCT2(algorithm='N')
        dct_value = custom.forward(x.cuda()).cpu()
        print("2D dct_value cuda")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test gpu 
        custom = dct.DCT2(algorithm='2N')
        dct_value = custom.forward(x.cuda()).cpu()
        print("2D dct_value cuda")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test gpu 
        custom = dct_lee.DCT2()
        dct_value = custom.forward(x.cuda()).cpu()
        print("2D dct_value cuda")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)
Ejemplo n.º 2
0
def eval_dct2d(x, expk0, expk1, expkM, expkN, runs):
    x_numpy = x.data.cpu().numpy()
    torch.cuda.synchronize()
    tt = time.time()
    y = fftpack.dct(fftpack.dct(x_numpy.T, norm=None).T/x.size(1), norm=None)/x.size(0)
    torch.cuda.synchronize()
    print("CPU scipy.fftpack.dct2d takes %.7f ms" % ((time.time()-tt)*1000))

    # 9s for 200 iterations 1024x1024 on GTX 1080
    torch.cuda.synchronize()
    tt = time.time()
    # with torch.autograd.profiler.profile(use_cuda=True) as prof:
    for i in range(runs):
        y_2N = discrete_spectral_transform.dct2_2N(x, expk0=expk0, expk1=expk1)
    torch.cuda.synchronize()
    # print(prof)
    print("PyTorch: dct2d_2N takes %.7f ms" % ((time.time()-tt)/runs*1000))

    # 11s for 200 iterations 1024x1024 on GTX 1080
    perm0 = discrete_spectral_transform.get_perm(x.size(-2), dtype=torch.int64, device=x.device)
    perm1 = discrete_spectral_transform.get_perm(x.size(-1), dtype=torch.int64, device=x.device)
    torch.cuda.synchronize()
    tt = time.time()
    # with torch.autograd.profiler.profile(use_cuda=True) as prof:
    for i in range(runs):
        y_N = discrete_spectral_transform.dct2_N(x, perm0=perm0, expk0=expk0, perm1=perm1, expk1=expk1)
    torch.cuda.synchronize()
    # print(prof)
    print("PyTorch: dct2d_N takes %.7f ms" % ((time.time()-tt)/runs*1000))

    dct2func = dct.DCT2(expk0, expk1, algorithm='2N')
    torch.cuda.synchronize()
    tt = time.time()
    # with torch.autograd.profiler.profile(use_cuda=True) as prof:
    for i in range(runs):
        y_2N = dct2func.forward(x)
    torch.cuda.synchronize()
    # print(prof)
    print("DCT2d_2N Function takes %.7f ms" % ((time.time()-tt)/runs*1000))

    dct2func = dct.DCT2(expk0, expk1, algorithm='N')
    y_N = dct2func.forward(x)
    torch.cuda.synchronize()
    # with torch.autograd.profiler.profile(use_cuda=True) as prof:
    tt = time.time()
    for i in range(runs):
        y_N = dct2func.forward(x)
    torch.cuda.synchronize()
    # print(prof)
    print("DCT2d_N Function takes %.7f ms" % ((time.time()-tt)/runs*1000))

    # The implementation below only supports float64 by now
    dct2func = dct_lee.DCT2(expk0, expk1)
    torch.cuda.synchronize()
    tt = time.time()
    # with torch.autograd.profiler.profile(use_cuda=True) as prof:
    for i in range(runs):
        y_N = dct2func.forward(x)
    torch.cuda.synchronize()
    # print(prof)
    print("DCT2d_Lee Function takes %.7f ms" % ((time.time()-tt)/runs*1000))

    dct2func = dct2_fft2.DCT2(expkM, expkN)
    y = dct2func.forward(x)
    torch.cuda.synchronize()
    tt = time.time()
    for i in range(runs):
        y_test = dct2func.forward(x)
    torch.cuda.synchronize()
    print("DCT2_FFT2 Function takes %.7f ms" % ((time.time()-tt)/runs*1000))

    print("")
def compare_different_methods(cuda_flag, M=1024, N=1024, dtype=torch.float64):
    density_map = torch.empty(M, N, dtype=dtype).uniform_(0, 10.0)
    if cuda_flag:
        density_map = density_map.cuda()
    expkM = discrete_spectral_transform.get_expk(M, dtype, density_map.device)
    expkN = discrete_spectral_transform.get_expk(N, dtype, density_map.device)
    exact_expkM = discrete_spectral_transform.get_exact_expk(M, dtype, density_map.device)
    exact_expkN = discrete_spectral_transform.get_exact_expk(N, dtype, density_map.device)
    print("M = {}, N = {}".format(M, N))

    wu = torch.arange(M, dtype=density_map.dtype, device=density_map.device).mul(2 * np.pi / M).view([M, 1])
    wv = torch.arange(N, dtype=density_map.dtype, device=density_map.device).mul(2 * np.pi / N).view([1, N])
    wu2_plus_wv2 = wu.pow(2) + wv.pow(2)
    wu2_plus_wv2[0, 0] = 1.0  # avoid zero-division, it will be zeroed out

    inv_wu2_plus_wv2_2X = 2.0 / wu2_plus_wv2
    inv_wu2_plus_wv2_2X[0, 0] = 0.0
    wu_by_wu2_plus_wv2_2X = wu.mul(inv_wu2_plus_wv2_2X)
    wv_by_wu2_plus_wv2_2X = wv.mul(inv_wu2_plus_wv2_2X)

    # the first approach is used as the ground truth
    auv_golden = dct.dct2(density_map, expk0=expkM, expk1=expkN)
    auv = auv_golden.clone()
    auv[0, :].mul_(0.5)
    auv[:, 0].mul_(0.5)
    auv_by_wu2_plus_wv2_wu = auv.mul(wu_by_wu2_plus_wv2_2X)
    auv_by_wu2_plus_wv2_wv = auv.mul(wv_by_wu2_plus_wv2_2X)
    field_map_x_golden = dct.idsct2(auv_by_wu2_plus_wv2_wu, expkM, expkN)
    field_map_y_golden = dct.idcst2(auv_by_wu2_plus_wv2_wv, expkM, expkN)
    # compute potential phi
    # auv / (wu**2 + wv**2)
    auv_by_wu2_plus_wv2 = auv.mul(inv_wu2_plus_wv2_2X).mul_(2)
    #potential_map = discrete_spectral_transform.idcct2(auv_by_wu2_plus_wv2, expkM, expkN)
    potential_map_golden = dct.idcct2(auv_by_wu2_plus_wv2, expkM, expkN)
    # compute energy
    energy_golden = potential_map_golden.mul(density_map).sum()

    if density_map.is_cuda:
        torch.cuda.synchronize()

    # the second approach uses the idxst_idct and idct_idxst
    dct2 = dct2_fft2.DCT2(exact_expkM, exact_expkN)
    idct2 = dct2_fft2.IDCT2(exact_expkM, exact_expkN)
    idct_idxst = dct2_fft2.IDCT_IDXST(exact_expkM, exact_expkN)
    idxst_idct = dct2_fft2.IDXST_IDCT(exact_expkM, exact_expkN)

    inv_wu2_plus_wv2 = 1.0 / wu2_plus_wv2
    inv_wu2_plus_wv2[0, 0] = 0.0
    wu_by_wu2_plus_wv2_half = wu.mul(inv_wu2_plus_wv2).mul_(0.5)
    wv_by_wu2_plus_wv2_half = wv.mul(inv_wu2_plus_wv2).mul_(0.5)

    buv = dct2.forward(density_map)

    buv_by_wu2_plus_wv2_wu = buv.mul(wu_by_wu2_plus_wv2_half)
    buv_by_wu2_plus_wv2_wv = buv.mul(wv_by_wu2_plus_wv2_half)
    field_map_x = idxst_idct.forward(buv_by_wu2_plus_wv2_wu)
    field_map_y = idct_idxst.forward(buv_by_wu2_plus_wv2_wv)
    buv_by_wu2_plus_wv2 = buv.mul(inv_wu2_plus_wv2)
    potential_map = idct2.forward(buv_by_wu2_plus_wv2)
    energy = potential_map.mul(density_map).sum()

    if density_map.is_cuda:
        torch.cuda.synchronize()

    # compare results
    np.testing.assert_allclose(buv.data.cpu().numpy(), auv_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(field_map_x.data.cpu().numpy(), field_map_x_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(field_map_y.data.cpu().numpy(), field_map_y_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(potential_map.data.cpu().numpy(), potential_map_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(energy.data.cpu().numpy(), energy_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)

    # the third approach uses the dct.idxst_idct and dct.idxst_idct
    dct2 = dct.DCT2(expkM, expkN)
    idct2 = dct.IDCT2(expkM, expkN)
    idct_idxst = dct.IDCT_IDXST(expkM, expkN)
    idxst_idct = dct.IDXST_IDCT(expkM, expkN)

    cuv = dct2.forward(density_map)

    cuv_by_wu2_plus_wv2_wu = cuv.mul(wu_by_wu2_plus_wv2_half)
    cuv_by_wu2_plus_wv2_wv = cuv.mul(wv_by_wu2_plus_wv2_half)
    field_map_x = idxst_idct.forward(cuv_by_wu2_plus_wv2_wu)
    field_map_y = idct_idxst.forward(cuv_by_wu2_plus_wv2_wv)
    cuv_by_wu2_plus_wv2 = cuv.mul(inv_wu2_plus_wv2)
    potential_map = idct2.forward(cuv_by_wu2_plus_wv2)
    energy = potential_map.mul(density_map).sum()

    if density_map.is_cuda:
        torch.cuda.synchronize()

    # compare results
    np.testing.assert_allclose(cuv.data.cpu().numpy(), auv_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(field_map_x.data.cpu().numpy(), field_map_x_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(field_map_y.data.cpu().numpy(), field_map_y_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(potential_map.data.cpu().numpy(), potential_map_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
    np.testing.assert_allclose(energy.data.cpu().numpy(), energy_golden.data.cpu().numpy(), rtol=1e-6, atol=1e-5)
Ejemplo n.º 4
0
    def test_dct2Random(self):
        torch.manual_seed(10)
        M = 4
        N = 8
        x = torch.empty(M, N, dtype=dtype).uniform_(0, 10.0)
        expkM = discrete_spectral_transform.get_exact_expk(M, dtype=x.dtype, device=x.device)
        expkN = discrete_spectral_transform.get_exact_expk(N, dtype=x.dtype, device=x.device)

        golden_value = discrete_spectral_transform.dct2_N(x).data.numpy()
        print("2D DCT golden_value")
        print(golden_value)

        # test cpu using N-FFT
        # pdb.set_trace()
        custom = dct.DCT2(algorithm='N')
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test cpu using 2N-FFT
        # pdb.set_trace()
        custom = dct.DCT2(algorithm='2N')
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test cpu using dct_lee
        # pdb.set_trace()
        custom = dct_lee.DCT2()
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        # test cpu using fft2
        custom = dct2_fft2.DCT2(expkM, expkN)
        dct_value = custom.forward(x)
        print("2D dct_value")
        print(dct_value.data.numpy())

        np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

        if torch.cuda.device_count():
            # test gpu
            custom = dct.DCT2(algorithm='N')
            dct_value = custom.forward(x.cuda()).cpu()
            print("2D dct_value cuda")
            print(dct_value.data.numpy())

            np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

            # test gpu
            custom = dct.DCT2(algorithm='2N')
            dct_value = custom.forward(x.cuda()).cpu()
            print("2D dct_value cuda")
            print(dct_value.data.numpy())

            np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

            # test gpu
            custom = dct_lee.DCT2()
            dct_value = custom.forward(x.cuda()).cpu()
            print("2D dct_value cuda")
            print(dct_value.data.numpy())

            np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)

            # test gpu using fft2
            custom = dct2_fft2.DCT2(expkM.cuda(), expkN.cuda())
            dct_value = custom.forward(x.cuda()).cpu()
            print("2D dct_value cuda")
            print(dct_value.data.numpy())

            np.testing.assert_allclose(dct_value.data.numpy(), golden_value, rtol=1e-6, atol=1e-5)