Ejemplo n.º 1
0
def test_ispd2005(design, algorithm, device_str):
    with gzip.open(design, "rb") as f:
        if sys.version_info[0] < 3:
            data_collections = pickle.load(f)
        else:
            data_collections = pickle.load(f, encoding='bytes')
        node_size_x = data_collections[0]
        node_size_y = data_collections[1]
        flat_net2pin_map = data_collections[2]
        flat_net2pin_start_map = data_collections[3]
        pin2net_map = data_collections[4]
        flat_node2pin_map = data_collections[5]
        flat_node2pin_start_map = data_collections[6]
        pin2node_map = data_collections[7]
        pin_offset_x = data_collections[8]
        pin_offset_y = data_collections[9]
        net_mask_ignore_large_degrees = data_collections[10]
        xl = data_collections[11]
        yl = data_collections[12]
        xh = data_collections[13]
        yh = data_collections[14]
        site_width = data_collections[15]
        row_height = data_collections[16]
        num_bins_x = data_collections[17]
        num_bins_y = data_collections[18]
        num_movable_nodes = data_collections[19]
        num_filler_nodes = data_collections[20]
        pos = data_collections[21]

        #net_mask = net_mask_ignore_large_degrees
        net_mask = np.ones_like(net_mask_ignore_large_degrees)
        for i in range(1, len(flat_net2pin_start_map)):
            degree = flat_net2pin_start_map[i] - flat_net2pin_start_map[i - 1]
            if degree > 100:
                net_mask[i - 1] = 0
        net_mask = torch.from_numpy(net_mask)

        #max_node_degree = 0
        #for i in range(1, len(flat_node2pin_start_map)):
        #    if i <= num_movable_nodes:
        #        max_node_degree = max(max_node_degree, flat_node2pin_start_map[i]-flat_node2pin_start_map[i-1])
        #print("max node degree %d" % (max_node_degree))

        device = torch.device(device_str)
        #if device.type == 'cuda':
        #    num_bins_x = int(2**(math.ceil(np.log2(math.sqrt(num_movable_nodes / 512)))))
        #    num_bins_y = num_bins_x

        print("bins %dx%d" % (num_bins_x, num_bins_y))
        print("num_movable_nodes %d, num_nodes %d" %
              (num_movable_nodes, node_size_x.numel() - num_filler_nodes))

        # test cpu/cuda
        custom = global_swap.GlobalSwap(
            node_size_x=node_size_x.float().to(device),
            node_size_y=node_size_y.float().to(device),
            flat_net2pin_map=flat_net2pin_map.to(device),
            flat_net2pin_start_map=flat_net2pin_start_map.to(device),
            pin2net_map=pin2net_map.to(device),
            flat_node2pin_map=flat_node2pin_map.to(device),
            flat_node2pin_start_map=flat_node2pin_start_map.to(device),
            pin2node_map=pin2node_map.to(device),
            pin_offset_x=pin_offset_x.float().to(device),
            pin_offset_y=pin_offset_y.float().to(device),
            net_mask=net_mask.to(device),
            xl=xl,
            yl=yl,
            xh=xh,
            yh=yh,
            site_width=site_width,
            row_height=row_height,
            num_bins_x=num_bins_x // 2,
            num_bins_y=num_bins_y // 2,
            num_movable_nodes=num_movable_nodes,
            num_filler_nodes=num_filler_nodes,
            batch_size=256,
            max_iters=2,
            algorithm=algorithm,
            num_threads=20)

        result = custom(pos.float().to(device))
Ejemplo n.º 2
0
    def build_detailed_placement(self, params, placedb, data_collections,
                                 device):
        """
        @brief detailed placement consisting of global swap and independent set matching 
        @param params parameters 
        @param placedb placement database 
        @param data_collections a collection of all data and variables required for constructing the ops 
        @param device cpu or cuda 
        """
        gs = global_swap.GlobalSwap(
            node_size_x=data_collections.node_size_x,
            node_size_y=data_collections.node_size_y,
            flat_region_boxes=data_collections.flat_region_boxes,
            flat_region_boxes_start=data_collections.flat_region_boxes_start,
            node2fence_region_map=data_collections.node2fence_region_map,
            flat_net2pin_map=data_collections.flat_net2pin_map,
            flat_net2pin_start_map=data_collections.flat_net2pin_start_map,
            pin2net_map=data_collections.pin2net_map,
            flat_node2pin_map=data_collections.flat_node2pin_map,
            flat_node2pin_start_map=data_collections.flat_node2pin_start_map,
            pin2node_map=data_collections.pin2node_map,
            pin_offset_x=data_collections.pin_offset_x,
            pin_offset_y=data_collections.pin_offset_y,
            net_mask=data_collections.net_mask_ignore_large_degrees,
            xl=placedb.xl,
            yl=placedb.yl,
            xh=placedb.xh,
            yh=placedb.yh,
            site_width=placedb.site_width,
            row_height=placedb.row_height,
            #num_bins_x=placedb.num_bins_x//16, num_bins_y=placedb.num_bins_y//16,
            num_bins_x=placedb.num_bins_x // 2,
            num_bins_y=placedb.num_bins_y // 2,
            num_movable_nodes=placedb.num_movable_nodes,
            num_terminal_NIs=placedb.num_terminal_NIs,
            num_filler_nodes=placedb.num_filler_nodes,
            batch_size=256,
            max_iters=2,
            algorithm='concurrent')
        kr = k_reorder.KReorder(
            node_size_x=data_collections.node_size_x,
            node_size_y=data_collections.node_size_y,
            flat_region_boxes=data_collections.flat_region_boxes,
            flat_region_boxes_start=data_collections.flat_region_boxes_start,
            node2fence_region_map=data_collections.node2fence_region_map,
            flat_net2pin_map=data_collections.flat_net2pin_map,
            flat_net2pin_start_map=data_collections.flat_net2pin_start_map,
            pin2net_map=data_collections.pin2net_map,
            flat_node2pin_map=data_collections.flat_node2pin_map,
            flat_node2pin_start_map=data_collections.flat_node2pin_start_map,
            pin2node_map=data_collections.pin2node_map,
            pin_offset_x=data_collections.pin_offset_x,
            pin_offset_y=data_collections.pin_offset_y,
            net_mask=data_collections.net_mask_ignore_large_degrees,
            xl=placedb.xl,
            yl=placedb.yl,
            xh=placedb.xh,
            yh=placedb.yh,
            site_width=placedb.site_width,
            row_height=placedb.row_height,
            num_bins_x=placedb.num_bins_x,
            num_bins_y=placedb.num_bins_y,
            num_movable_nodes=placedb.num_movable_nodes,
            num_terminal_NIs=placedb.num_terminal_NIs,
            num_filler_nodes=placedb.num_filler_nodes,
            K=4,
            max_iters=2)
        ism = independent_set_matching.IndependentSetMatching(
            node_size_x=data_collections.node_size_x,
            node_size_y=data_collections.node_size_y,
            flat_region_boxes=data_collections.flat_region_boxes,
            flat_region_boxes_start=data_collections.flat_region_boxes_start,
            node2fence_region_map=data_collections.node2fence_region_map,
            flat_net2pin_map=data_collections.flat_net2pin_map,
            flat_net2pin_start_map=data_collections.flat_net2pin_start_map,
            pin2net_map=data_collections.pin2net_map,
            flat_node2pin_map=data_collections.flat_node2pin_map,
            flat_node2pin_start_map=data_collections.flat_node2pin_start_map,
            pin2node_map=data_collections.pin2node_map,
            pin_offset_x=data_collections.pin_offset_x,
            pin_offset_y=data_collections.pin_offset_y,
            net_mask=data_collections.net_mask_ignore_large_degrees,
            xl=placedb.xl,
            yl=placedb.yl,
            xh=placedb.xh,
            yh=placedb.yh,
            site_width=placedb.site_width,
            row_height=placedb.row_height,
            num_bins_x=placedb.num_bins_x,
            num_bins_y=placedb.num_bins_y,
            num_movable_nodes=placedb.num_movable_nodes,
            num_terminal_NIs=placedb.num_terminal_NIs,
            num_filler_nodes=placedb.num_filler_nodes,
            batch_size=2048,
            set_size=128,
            max_iters=50,
            algorithm='concurrent')

        # wirelength for position
        def build_detailed_placement_op(pos):
            logging.info("Start ABCDPlace for refinement")
            pos1 = pos
            legal = self.op_collections.legality_check_op(pos1)
            logging.info("ABCDPlace input legal flag = %d" % (legal))
            if not legal:
                return pos1

            # integer factorization to prime numbers
            def prime_factorization(num):
                lt = []
                while num != 1:
                    for i in range(2, int(num + 1)):
                        if num % i == 0:  # i is a prime factor
                            lt.append(i)
                            num = num / i  # get the quotient for further factorization
                            break
                return lt

            # compute the scale factor for detailed placement
            # as the algorithms prefer integer coordinate systems
            scale_factor = params.scale_factor
            if params.scale_factor != 1.0:
                inv_scale_factor = int(round(1.0 / params.scale_factor))
                prime_factors = prime_factorization(inv_scale_factor)
                target_inv_scale_factor = 1
                for factor in prime_factors:
                    if factor != 2 and factor != 5:
                        target_inv_scale_factor = inv_scale_factor
                        break
                scale_factor = 1.0 / target_inv_scale_factor
                logging.info("Deriving from system scale factor %g (1/%d)" %
                             (params.scale_factor, inv_scale_factor))
                logging.info(
                    "Use scale factor %g (1/%d) for detailed placement" %
                    (scale_factor, target_inv_scale_factor))

            for i in range(1):
                pos1 = kr(pos1, scale_factor)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("K-Reorder legal flag = %d" % (legal))
                if not legal:
                    return pos1
                pos1 = ism(pos1, scale_factor)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("Independent set matching legal flag = %d" %
                             (legal))
                if not legal:
                    return pos1
                pos1 = gs(pos1, scale_factor)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("Global swap legal flag = %d" % (legal))
                if not legal:
                    return pos1
                pos1 = kr(pos1, scale_factor)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("K-Reorder legal flag = %d" % (legal))
                if not legal:
                    return pos1
            return pos1

        return build_detailed_placement_op
Ejemplo n.º 3
0
    def test_random(self):
        dtype = np.float64
        xx = np.array([1.0, 1.5, 3.0]).astype(dtype)
        yy = np.array([1.0, 3.0, 1.0]).astype(dtype)
        node_size_x = np.array([1.0, 2.0, 1.0]).astype(dtype)
        node_size_y = np.array([2.0, 2.0, 2.0]).astype(dtype)
        num_nodes = len(xx)
        net2pin_map = np.array([np.array([0, 4]), np.array([1, 2, 3])])
        pin2net_map, flat_net2pin_map, flat_net2pin_start_map = flatten_2D_map(
            net2pin_map)
        node2pin_map = np.array(
            [np.array([0, 1]),
             np.array([2]), np.array([3, 4])])
        pin2node_map, flat_node2pin_map, flat_node2pin_start_map = flatten_2D_map(
            node2pin_map)
        # net mask
        ignore_net_degree = 4
        net_mask = np.ones(len(net2pin_map), dtype=np.uint8)
        for i in range(len(net2pin_map)):
            if len(net2pin_map[i]) >= ignore_net_degree:
                net_mask[i] = 0
        # pin offset
        pin_offset_x = np.zeros(len(pin2net_map))
        pin_offset_y = np.zeros(len(pin2net_map))

        xl = 1.0
        yl = 1.0
        xh = 5.0
        yh = 5.0
        num_terminals = 0
        num_terminal_NIs = 0
        num_filler_nodes = 0
        num_movable_nodes = len(
            xx) - num_terminals - num_terminal_NIs - num_filler_nodes
        site_width = 1
        row_height = 2
        num_bins_x = 2
        num_bins_y = 2
        batch_size = 32

        print("flat_net2pin_map = ", flat_net2pin_map)
        print("flat_net2pin_start_map = ", flat_net2pin_start_map)
        print("flat_node2pin_map = ", flat_node2pin_map)
        print("flat_node2pin_start_map = ", flat_node2pin_start_map)

        plot(
            "initial.png", xx, yy, node_size_x, node_size_y, xl, yl, xh, yh,
            num_bins_x, num_bins_y, num_movable_nodes + num_terminals +
            num_terminal_NIs + num_filler_nodes, num_movable_nodes,
            num_movable_nodes + num_terminals + num_terminal_NIs,
            num_filler_nodes)

        # test cpu
        custom = global_swap.GlobalSwap(
            torch.from_numpy(node_size_x),
            torch.from_numpy(node_size_y),
            torch.from_numpy(flat_net2pin_map),
            torch.from_numpy(flat_net2pin_start_map),
            torch.from_numpy(pin2net_map),
            torch.from_numpy(flat_node2pin_map),
            torch.from_numpy(flat_node2pin_start_map),
            torch.from_numpy(pin2node_map),
            torch.from_numpy(pin_offset_x),
            torch.from_numpy(pin_offset_y),
            torch.from_numpy(net_mask),
            xl=xl,
            yl=yl,
            xh=xh,
            yh=yh,
            site_width=site_width,
            row_height=row_height,
            num_bins_x=num_bins_x,
            num_bins_y=num_bins_y,
            num_movable_nodes=num_movable_nodes,
            num_terminal_NIs=num_terminal_NIs,
            num_filler_nodes=num_filler_nodes,
            batch_size=batch_size)

        pos = Variable(torch.from_numpy(np.concatenate([xx, yy])))
        result = custom(pos)
        print("initial result = ", np.concatenate([xx, yy]))
        print("custom_result = ", result)

        print("average displacement = %g" %
              (np.sum(np.absolute(result.numpy() - np.concatenate([xx, yy]))) /
               num_movable_nodes))

        plot(
            "final.png",
            result.numpy()[0:len(xx)],
            result.numpy()[len(xx):], node_size_x, node_size_y, xl, yl, xh, yh,
            num_bins_x, num_bins_y, num_movable_nodes + num_terminals +
            num_terminal_NIs + num_filler_nodes, num_movable_nodes,
            num_movable_nodes + num_terminals + num_terminal_NIs,
            num_filler_nodes)

        # test cuda
        custom_cuda = global_swap.GlobalSwap(
            torch.from_numpy(node_size_x).cuda(),
            torch.from_numpy(node_size_y).cuda(),
            torch.from_numpy(flat_net2pin_map).cuda(),
            torch.from_numpy(flat_net2pin_start_map).cuda(),
            torch.from_numpy(pin2net_map).cuda(),
            torch.from_numpy(flat_node2pin_map).cuda(),
            torch.from_numpy(flat_node2pin_start_map).cuda(),
            torch.from_numpy(pin2node_map).cuda(),
            torch.from_numpy(pin_offset_x).cuda(),
            torch.from_numpy(pin_offset_y).cuda(),
            torch.from_numpy(net_mask).cuda(),
            xl=xl,
            yl=yl,
            xh=xh,
            yh=yh,
            site_width=site_width,
            row_height=row_height,
            num_bins_x=num_bins_x,
            num_bins_y=num_bins_y,
            num_movable_nodes=num_movable_nodes,
            num_terminal_NIs=num_terminal_NIs,
            num_filler_nodes=num_filler_nodes,
            batch_size=batch_size)

        pos = Variable(torch.from_numpy(np.concatenate([xx, yy]))).cuda()
        result_cuda = custom_cuda(pos)
        print("custom_result = ", result_cuda.data.cpu())
Ejemplo n.º 4
0
    def build_detailed_placement(self, params, placedb, data_collections,
                                 device):
        """
        @brief detailed placement consisting of global swap and independent set matching 
        @param params parameters 
        @param placedb placement database 
        @param data_collections a collection of all data and variables required for constructing the ops 
        @param device cpu or cuda 
        """
        gs = global_swap.GlobalSwap(
            node_size_x=data_collections.node_size_x,
            node_size_y=data_collections.node_size_y,
            flat_region_boxes=data_collections.flat_region_boxes,
            flat_region_boxes_start=data_collections.flat_region_boxes_start,
            node2fence_region_map=data_collections.node2fence_region_map,
            flat_net2pin_map=data_collections.flat_net2pin_map,
            flat_net2pin_start_map=data_collections.flat_net2pin_start_map,
            pin2net_map=data_collections.pin2net_map,
            flat_node2pin_map=data_collections.flat_node2pin_map,
            flat_node2pin_start_map=data_collections.flat_node2pin_start_map,
            pin2node_map=data_collections.pin2node_map,
            pin_offset_x=data_collections.pin_offset_x,
            pin_offset_y=data_collections.pin_offset_y,
            net_mask=data_collections.net_mask_ignore_large_degrees,
            xl=placedb.xl,
            yl=placedb.yl,
            xh=placedb.xh,
            yh=placedb.yh,
            site_width=placedb.site_width,
            row_height=placedb.row_height,
            #num_bins_x=placedb.num_bins_x//16, num_bins_y=placedb.num_bins_y//16,
            num_bins_x=placedb.num_bins_x // 2,
            num_bins_y=placedb.num_bins_y // 2,
            num_movable_nodes=placedb.num_movable_nodes,
            num_terminal_NIs=placedb.num_terminal_NIs,
            num_filler_nodes=placedb.num_filler_nodes,
            batch_size=256,
            max_iters=2,
            algorithm='concurrent',
            num_threads=params.num_threads)
        kr = k_reorder.KReorder(
            node_size_x=data_collections.node_size_x,
            node_size_y=data_collections.node_size_y,
            flat_region_boxes=data_collections.flat_region_boxes,
            flat_region_boxes_start=data_collections.flat_region_boxes_start,
            node2fence_region_map=data_collections.node2fence_region_map,
            flat_net2pin_map=data_collections.flat_net2pin_map,
            flat_net2pin_start_map=data_collections.flat_net2pin_start_map,
            pin2net_map=data_collections.pin2net_map,
            flat_node2pin_map=data_collections.flat_node2pin_map,
            flat_node2pin_start_map=data_collections.flat_node2pin_start_map,
            pin2node_map=data_collections.pin2node_map,
            pin_offset_x=data_collections.pin_offset_x,
            pin_offset_y=data_collections.pin_offset_y,
            net_mask=data_collections.net_mask_ignore_large_degrees,
            xl=placedb.xl,
            yl=placedb.yl,
            xh=placedb.xh,
            yh=placedb.yh,
            site_width=placedb.site_width,
            row_height=placedb.row_height,
            num_bins_x=placedb.num_bins_x,
            num_bins_y=placedb.num_bins_y,
            num_movable_nodes=placedb.num_movable_nodes,
            num_terminal_NIs=placedb.num_terminal_NIs,
            num_filler_nodes=placedb.num_filler_nodes,
            K=4,
            max_iters=2,
            num_threads=params.num_threads)
        ism = independent_set_matching.IndependentSetMatching(
            node_size_x=data_collections.node_size_x,
            node_size_y=data_collections.node_size_y,
            flat_region_boxes=data_collections.flat_region_boxes,
            flat_region_boxes_start=data_collections.flat_region_boxes_start,
            node2fence_region_map=data_collections.node2fence_region_map,
            flat_net2pin_map=data_collections.flat_net2pin_map,
            flat_net2pin_start_map=data_collections.flat_net2pin_start_map,
            pin2net_map=data_collections.pin2net_map,
            flat_node2pin_map=data_collections.flat_node2pin_map,
            flat_node2pin_start_map=data_collections.flat_node2pin_start_map,
            pin2node_map=data_collections.pin2node_map,
            pin_offset_x=data_collections.pin_offset_x,
            pin_offset_y=data_collections.pin_offset_y,
            net_mask=data_collections.net_mask_ignore_large_degrees,
            xl=placedb.xl,
            yl=placedb.yl,
            xh=placedb.xh,
            yh=placedb.yh,
            site_width=placedb.site_width,
            row_height=placedb.row_height,
            num_bins_x=placedb.num_bins_x,
            num_bins_y=placedb.num_bins_y,
            num_movable_nodes=placedb.num_movable_nodes,
            num_terminal_NIs=placedb.num_terminal_NIs,
            num_filler_nodes=placedb.num_filler_nodes,
            batch_size=2048,
            set_size=128,
            max_iters=50,
            algorithm='concurrent',
            num_threads=params.num_threads)

        # wirelength for position
        def build_detailed_placement_op(pos):
            logging.info("Start ABCDPlace for refinement")
            pos1 = pos
            for i in range(1):
                pos1 = kr(pos1)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("K-Reorder legal flag = %d" % (legal))
                if not legal:
                    return pos1
                pos1 = ism(pos1)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("Independent set matching legal flag = %d" %
                             (legal))
                if not legal:
                    return pos1
                pos1 = gs(pos1)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("Global swap legal flag = %d" % (legal))
                if not legal:
                    return pos1
                pos1 = kr(pos1)
                legal = self.op_collections.legality_check_op(pos1)
                logging.info("K-Reorder legal flag = %d" % (legal))
                if not legal:
                    return pos1
            return pos1

        return build_detailed_placement_op