Ejemplo n.º 1
0
    def make_data_dict(self,drunkdict):

        datadict = {}
        for z in drunkdict.keys():
            datadict[z] = [dd.open_drunk(drunkdict[z][0],skip_radii=drunkdict[z][2]),
                           drunkdict[z][1],
                           drunkdict[z][2]]

        return datadict
Ejemplo n.º 2
0
def test(drunkdict,pardict,output,sample,burn=10):

    # pardict = {'h_dust': [True, 8.43], 
    #            'Vr': [False, 200, 300], 
    #            'hrot': [False, 4, 5.], 
    #            'kappa_0': [True, 0.652], 
    #            'z_d': [True, 0.43]}
    # drunkdict = {0:['ESO_z0_drunk.fits',False,[]]}
    sax = mark_VI(drunkdict,pardict,'test',1001)
    S = pymc.MCMC(sax.model)
    S.sample(sample,burn=burn)
    traces = {}
    bestfit = {}
    outdict = copy.deepcopy(pardict)
    for k in outdict.keys():
        if not outdict[k][0]:
            trace = S.trace(k)[:]
            mean = np.mean(trace)
            traces[k] = trace
            bestfit[k] = mean
            outdict[k][1] = mean
    
    bars = []
    datadict = {}
    for z in drunkdict.keys():
        datadict[z] = [dd.open_drunk(drunkdict[z][0],skip_radii=drunkdict[z][2]),
                       drunkdict[z][1],
                       drunkdict[z][2]]
    for z in datadict.keys():
        simfile = trane.make_boring([outdict['Vr'][1]],
                                    [outdict['hrot'][1]],
                                    h_dust=outdict['h_dust'][1],
                                    kappa_0=outdict['kappa_0'][1],
                                    z_d=outdict['z_d'][1],
                                    name='final',size=1001,z=z,
                                    flarepars=False)[0]
    
        bar = trane.moments_notice(datadict[z][0],simfile,
                                   skip_radii=datadict[z][2],
                                   flip=datadict[z][1])

        bars.append(bar)

    pp = PDF(output)
    for k in traces.keys():
        ax = plt.figure().add_subplot(111)
        ax.hist(traces[k],bins=50,histtype='step')
        ax.set_xlabel(k)
        ax.set_ylabel('PDF')
        ax.set_title('Most likely value:\n{:9.4f}'.format(bestfit[k]))
        pp.savefig(ax.figure)

    pp.close()

    return bestfit, bars, traces
Ejemplo n.º 3
0
    def get_data(self,drunkdict):

        bigm1 = np.array([])
        bigm2 = np.array([])
        bigm3 = np.array([])
        for z in drunkdict.keys():
            _,_,_, m1, m2, m3 = dd.open_drunk(drunkdict[z][0],
                                              skip_radii=drunkdict[z][2])
            bigm1 = np.append(bigm1,m1[0])
            bigm2 = np.append(bigm2,m2[0])
            bigm3 = np.append(bigm3,m3[0])
        
        out = np.r_[bigm1,bigm2]#,bigm3]
        return out