Ejemplo n.º 1
0
        estimator.fit(data)
        mse.append(estimator.inertia_)
        mae.append(ds.compute_mae(data.values, estimator.labels_, estimator.cluster_centers_))
        sc.append(silhouette_score(data, estimator.labels_))
        db.append(davies_bouldin_score(data, estimator.labels_))
        ds.plot_clusters(data, eixo_x, eixo_y, estimator.labels_.astype(float), estimator.cluster_centers_, k,
                         f'KMeans k={k}', ax=axs[i,j])
        i, j = (i + 1, 0) if (n+1) % cols == 0 else (i, j + 1)
    plt.suptitle('QOT Clustering - K-Means after PCA')
    plt.savefig(subDir + 'QOT Clustering - K-Means after PCA')



    print('QOT Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS, mse, title='KMeans MSE', xlabel='k', ylabel='MSE', ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS, mae, title='KMeans MAE', xlabel='k', ylabel='MAE', ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS, sc, title='KMeans SC', xlabel='k', ylabel='SC', ax=ax[0, 2], percentage=True)
    ds.plot_line(N_CLUSTERS, db, title='KMeans DB', xlabel='k', ylabel='DB', ax=ax[0, 3])
    plt.suptitle('QOT Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')
    plt.savefig(subDir + 'QOT Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')



    print('QOT Clustering - Expectation-Maximization after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    _, axs = plt.subplots(rows, cols, figsize=(cols*5, rows*5), squeeze=False)
    i, j = 0, 0
Ejemplo n.º 2
0
        estimator = KMeans(n_clusters=k)
        estimator.fit(data)
        mse.append(estimator.inertia_)
        mae.append(ds.compute_mae(data.values, estimator.labels_, estimator.cluster_centers_))
        sc.append(silhouette_score(data, estimator.labels_))
        db.append(davies_bouldin_score(data, estimator.labels_))
        ds.plot_clusters(data, v2, v1, estimator.labels_.astype(float), estimator.cluster_centers_, k,
                         f'KMeans k={k}', ax=axs[i,j])
        i, j = (i + 1, 0) if (n+1) % cols == 0 else (i, j + 1)
    plt.suptitle('QOT Clustering - K-Means')
    plt.savefig(subDir + 'QOT Clustering - K-Means')


    print('QOT Clustering - K-Means MSE vs MAE vs SC vs DB')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS, mse, title='KMeans MSE', xlabel='k', ylabel='MSE', ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS, mae, title='KMeans MAE', xlabel='k', ylabel='MAE', ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS, sc, title='KMeans SC', xlabel='k', ylabel='SC', ax=ax[0, 2], percentage=True)
    ds.plot_line(N_CLUSTERS, db, title='KMeans DB', xlabel='k', ylabel='DB', ax=ax[0, 3])
    plt.suptitle('QOT Clustering - K-Means MSE vs MAE vs SC vs DB')
    plt.savefig(subDir + 'QOT Clustering - K-Means MSE vs MAE vs SC vs DB')

    """
    print('QOT Clustering - Expectation-Maximization')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    _, axs = plt.subplots(rows, cols, figsize=(cols*5, rows*5), squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
Ejemplo n.º 3
0
        data = prepfunctions.dummification(perm_data.copy(deep=True), boolean_attributes, bins, strategie)

        MIN_SUP: float = 0.001
        var_min_sup =[0.2, 0.1] + [round(i*MIN_SUP, 2) for i  in range(100, 0, -10)]

        plt.figure()
        patterns: pd.DataFrame = pm.apriori(data, min_support=MIN_SUP, use_colnames=True, verbose=True)
        print(len(patterns),'patterns')
        nr_patterns = []
        for sup in var_min_sup:
            pat = patterns[patterns['support']>=sup]
            nr_patterns.append(len(pat))

        plt.figure(figsize=(6, 4))
        ds.plot_line(var_min_sup, nr_patterns, title='Nr Patterns x Support', xlabel='support', ylabel='Nr Patterns')
        plt.savefig(subDir + 'HFCR Pattern Mining - Nr Patterns x Support')

        MIN_CONF: float = 0.1
        rules = pm.association_rules(patterns, metric='confidence', min_threshold=MIN_CONF*5, support_only=False)
        print(f'\tfound {len(rules)} rules')

        nr_rules_sp = analyse_per_metric(rules, 'support', var_min_sup, subDir)
        plt.figure(figsize=(6, 4))
        ds.plot_line(var_min_sup, nr_rules_sp, title='Nr Rules x Support', xlabel='support', ylabel='Nr. rules', percentage=False)
        plt.savefig(subDir + 'HFCR Pattern Mining - Nr Rules x Support')

        var_min_conf = [round(i * MIN_CONF, 2) for i in range(10, 5, -1)]
        nr_rules_cf = analyse_per_metric(rules, 'confidence', var_min_conf, subDir)
        plt.figure(figsize=(6, 4))
        ds.plot_line(var_min_conf, nr_rules_cf, title='Nr Rules x Confidence', xlabel='confidence', ylabel='Nr Rules', percentage=False)
Ejemplo n.º 4
0
def pca_function(data, subDir):
    data.pop('DEATH_EVENT')

    variables = data.columns.values
    eixo_x = 0
    eixo_y = 4
    eixo_z = 7

    plt.figure()
    plt.xlabel(variables[eixo_y])
    plt.ylabel(variables[eixo_z])
    plt.scatter(data.iloc[:, eixo_y], data.iloc[:, eixo_z])

    print('HFCR Feature Extraction - PCA')
    mean = (data.mean(axis=0)).tolist()
    centered_data = data - mean
    cov_mtx = centered_data.cov()
    eigvals, eigvecs = np.linalg.eig(cov_mtx)

    pca = PCA()
    pca.fit(centered_data)
    PC = pca.components_
    var = pca.explained_variance_

    # PLOT EXPLAINED VARIANCE RATIO
    fig = plt.figure(figsize=(4, 4))
    plt.title('Explained variance ratio')
    plt.xlabel('PC')
    plt.ylabel('ratio')
    x_values = [str(i) for i in range(1, len(pca.components_) + 1)]
    bwidth = 0.5
    ax = plt.gca()
    ax.set_xticklabels(x_values)
    ax.set_ylim(0.0, 1.0)
    ax.bar(x_values, pca.explained_variance_ratio_, width=bwidth)
    ax.plot(pca.explained_variance_ratio_)
    for i, v in enumerate(pca.explained_variance_ratio_):
        ax.text(i, v + 0.05, f'{v*100:.1f}', ha='center', fontweight='bold')
    plt.suptitle('HFCR Feature Extraction - PCA')
    plt.savefig(subDir + 'HFCR Feature Extraction - PCA')

    print('HFCR Feature Extraction - PCA 2')
    transf = pca.transform(data)

    _, axs = plt.subplots(1, 2, figsize=(2 * 5, 1 * 5), squeeze=False)
    axs[0, 0].set_xlabel(variables[eixo_y])
    axs[0, 0].set_ylabel(variables[eixo_z])
    axs[0, 0].scatter(data.iloc[:, eixo_y], data.iloc[:, eixo_z])

    axs[0, 1].set_xlabel('PC1')
    axs[0, 1].set_ylabel('PC2')
    axs[0, 1].scatter(transf[:, 0], transf[:, 1])
    plt.suptitle('HFCR Feature Extraction - PCA')
    plt.savefig(subDir + 'HFCR Feature Extraction - PCA')

    print('Clustering after PCA')
    data = pd.DataFrame(transf[:, :2], columns=['PC1', 'PC2'])
    eixo_x = 0
    eixo_y = 1

    N_CLUSTERS = [2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29]
    rows, cols = ds.choose_grid(len(N_CLUSTERS))

    print('HFCR Clustering - K-Means after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
        k = N_CLUSTERS[n]
        estimator = KMeans(n_clusters=k)
        estimator.fit(data)
        mse.append(estimator.inertia_)
        mae.append(
            ds.compute_mae(data.values, estimator.labels_,
                           estimator.cluster_centers_))
        sc.append(silhouette_score(data, estimator.labels_))
        db.append(davies_bouldin_score(data, estimator.labels_))
        ds.plot_clusters(data,
                         eixo_x,
                         eixo_y,
                         estimator.labels_.astype(float),
                         estimator.cluster_centers_,
                         k,
                         f'KMeans k={k}',
                         ax=axs[i, j])
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - K-Means after PCA')
    plt.savefig(subDir + 'HFCR Clustering - K-Means after PCA')

    print(
        'HFCR Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS,
                 mse,
                 title='KMeans MSE',
                 xlabel='k',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS,
                 mae,
                 title='KMeans MAE',
                 xlabel='k',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS,
                 sc,
                 title='KMeans SC',
                 xlabel='k',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(N_CLUSTERS,
                 db,
                 title='KMeans DB',
                 xlabel='k',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')
    plt.savefig(
        subDir +
        'HFCR Clustering - K-Means after PCA MSE vs MAE vs SC vs DB after PCA')

    print('HFCR Clustering - Expectation-Maximization after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
        k = N_CLUSTERS[n]
        estimator = GaussianMixture(n_components=k)
        estimator.fit(data)
        labels = estimator.predict(data)
        mse.append(ds.compute_mse(data.values, labels, estimator.means_))
        mae.append(ds.compute_mae(data.values, labels, estimator.means_))
        sc.append(silhouette_score(data, labels))
        db.append(davies_bouldin_score(data, labels))
        ds.plot_clusters(data,
                         eixo_x,
                         eixo_y,
                         labels.astype(float),
                         estimator.means_,
                         k,
                         f'EM k={k}',
                         ax=axs[i, j])
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - Expectation-Maximization after PCA')
    plt.savefig(subDir +
                'HFCR Clustering - Expectation-Maximization after PCA')

    print(
        'HFCR Clustering - Expectation-Maximization MSE vs MAE vs SC vs DB after PCA'
    )
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS,
                 mse,
                 title='EM MSE',
                 xlabel='k',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS,
                 mae,
                 title='EM MAE',
                 xlabel='k',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS,
                 sc,
                 title='EM SC',
                 xlabel='k',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(N_CLUSTERS,
                 db,
                 title='EM DB',
                 xlabel='k',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Expectation-Maximization MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - Expectation-Maximization MSE vs MAE vs SC vs DB after PCA'
    )

    print('HFCR Clustering - EPS (Density-based) after PCA')
    EPS = [2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(EPS))
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(EPS)):
        estimator = DBSCAN(eps=EPS[n], min_samples=2)
        estimator.fit(data)
        labels = estimator.labels_
        k = len(set(labels)) - (1 if -1 in labels else 0)
        if k > 1:
            centers = ds.compute_centroids(data, labels)
            mse.append(ds.compute_mse(data.values, labels, centers))
            mae.append(ds.compute_mae(data.values, labels, centers))
            sc.append(silhouette_score(data, labels))
            db.append(davies_bouldin_score(data, labels))
            ds.plot_clusters(data,
                             eixo_x,
                             eixo_y,
                             labels.astype(float),
                             estimator.components_,
                             k,
                             f'DBSCAN eps={EPS[n]} k={k}',
                             ax=axs[i, j])
            i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
        else:
            mse.append(0)
            mae.append(0)
            sc.append(0)
            db.append(0)
    plt.suptitle('HFCR Clustering - EPS (Density-based) after PCA')
    plt.savefig(subDir + 'HFCR Clustering - EPS (Density-based) after PCA')

    print(
        'HFCR Clustering - EPS (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(EPS,
                 mse,
                 title='DBSCAN MSE',
                 xlabel='eps',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(EPS,
                 mae,
                 title='DBSCAN MAE',
                 xlabel='eps',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(EPS,
                 sc,
                 title='DBSCAN SC',
                 xlabel='eps',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(EPS,
                 db,
                 title='DBSCAN DB',
                 xlabel='eps',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - EPS (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - EPS (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )

    print('HFCR Clustering - Metric (Density-based) after PCA')
    METRICS = ['euclidean', 'cityblock', 'chebyshev', 'cosine', 'jaccard']
    distances = []
    for m in METRICS:
        dist = np.mean(np.mean(squareform(pdist(data.values, metric=m))))
        distances.append(dist)

    print('AVG distances among records', distances)
    distances[0] = 80
    distances[1] = 50
    distances[2] = 80
    distances[3] = 0.0005
    distances[4] = 0.0009
    print('CHOSEN EPS', distances)

    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(METRICS))
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(METRICS)):
        estimator = DBSCAN(eps=distances[n], min_samples=2, metric=METRICS[n])
        estimator.fit(data)
        labels = estimator.labels_
        k = len(set(labels)) - (1 if -1 in labels else 0)
        if k > 1:
            centers = ds.compute_centroids(data, labels)
            mse.append(ds.compute_mse(data.values, labels, centers))
            mae.append(ds.compute_mae(data.values, labels, centers))
            sc.append(silhouette_score(data, labels))
            db.append(davies_bouldin_score(data, labels))
            ds.plot_clusters(
                data,
                eixo_x,
                eixo_y,
                labels.astype(float),
                estimator.components_,
                k,
                f'DBSCAN metric={METRICS[n]} eps={distances[n]:.2f} k={k}',
                ax=axs[i, j])
        else:
            print(k)
            mse.append(0)
            mae.append(0)
            sc.append(0)
            db.append(0)
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - Metric (Density-based) after PCA')
    plt.savefig(subDir + 'HFCR Clustering - Metric (Density-based) after PCA')

    print(
        'HFCR Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.bar_chart(METRICS,
                 mse,
                 title='DBSCAN MSE',
                 xlabel='metric',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.bar_chart(METRICS,
                 mae,
                 title='DBSCAN MAE',
                 xlabel='metric',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.bar_chart(METRICS,
                 sc,
                 title='DBSCAN SC',
                 xlabel='metric',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.bar_chart(METRICS,
                 db,
                 title='DBSCAN DB',
                 xlabel='metric',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - Metric (Density-based) MSE vs MAE vs SC vs DB after PCA'
    )

    print('HFCR Clustering - Hierarchical after PCA')
    mse: list = []
    mae: list = []
    sc: list = []
    db: list = []
    rows, cols = ds.choose_grid(len(N_CLUSTERS))
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    i, j = 0, 0
    for n in range(len(N_CLUSTERS)):
        k = N_CLUSTERS[n]
        estimator = AgglomerativeClustering(n_clusters=k)
        estimator.fit(data)
        labels = estimator.labels_
        centers = ds.compute_centroids(data, labels)
        mse.append(ds.compute_mse(data.values, labels, centers))
        mae.append(ds.compute_mae(data.values, labels, centers))
        sc.append(silhouette_score(data, labels))
        db.append(davies_bouldin_score(data, labels))
        ds.plot_clusters(data,
                         eixo_x,
                         eixo_y,
                         labels,
                         centers,
                         k,
                         f'Hierarchical k={k}',
                         ax=axs[i, j])
        i, j = (i + 1, 0) if (n + 1) % cols == 0 else (i, j + 1)
    plt.suptitle('HFCR Clustering - Hierarchical after PCA')
    plt.savefig(subDir + 'HFCR Clustering - Hierarchical after PCA')

    print('HFCR Clustering - Hierarchical MSE vs MAE vs SC vs DB after PCA')
    fig, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.plot_line(N_CLUSTERS,
                 mse,
                 title='Hierarchical MSE',
                 xlabel='k',
                 ylabel='MSE',
                 ax=ax[0, 0])
    ds.plot_line(N_CLUSTERS,
                 mae,
                 title='Hierarchical MAE',
                 xlabel='k',
                 ylabel='MAE',
                 ax=ax[0, 1])
    ds.plot_line(N_CLUSTERS,
                 sc,
                 title='Hierarchical SC',
                 xlabel='k',
                 ylabel='SC',
                 ax=ax[0, 2],
                 percentage=True)
    ds.plot_line(N_CLUSTERS,
                 db,
                 title='Hierarchical DB',
                 xlabel='k',
                 ylabel='DB',
                 ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Hierarchical MSE vs MAE vs SC vs DB after PCA')
    plt.savefig(
        subDir +
        'HFCR Clustering - Hierarchical MSE vs MAE vs SC vs DB after PCA')

    print('HFCR Clustering - Metric (Hierarchical) after PCA')
    METRICS = ['euclidean', 'cityblock', 'chebyshev', 'cosine', 'jaccard']
    LINKS = ['complete', 'average']
    k = 3
    values_mse = {}
    values_mae = {}
    values_sc = {}
    values_db = {}
    rows = len(METRICS)
    cols = len(LINKS)
    _, axs = plt.subplots(rows,
                          cols,
                          figsize=(cols * 5, rows * 5),
                          squeeze=False)
    for i in range(len(METRICS)):
        mse: list = []
        mae: list = []
        sc: list = []
        db: list = []
        m = METRICS[i]
        for j in range(len(LINKS)):
            link = LINKS[j]
            estimator = AgglomerativeClustering(n_clusters=k,
                                                linkage=link,
                                                affinity=m)
            estimator.fit(data)
            labels = estimator.labels_
            centers = ds.compute_centroids(data, labels)
            mse.append(ds.compute_mse(data.values, labels, centers))
            mae.append(ds.compute_mae(data.values, labels, centers))
            sc.append(silhouette_score(data, labels))
            db.append(davies_bouldin_score(data, labels))
            ds.plot_clusters(data,
                             eixo_x,
                             eixo_y,
                             labels,
                             centers,
                             k,
                             f'Hierarchical k={k} metric={m} link={link}',
                             ax=axs[i, j])
        values_mse[m] = mse
        values_mae[m] = mae
        values_sc[m] = sc
        values_db[m] = db
    plt.suptitle('HFCR Clustering - Metric (Hierarchical) after PCA')
    plt.savefig(subDir + 'HFCR Clustering - Metric (Hierarchical) after PCA')

    print(
        'HFCR Clustering - Metric (Hierarchical) MSE vs MAE vs SC vs DB after PCA'
    )
    _, ax = plt.subplots(1, 4, figsize=(10, 3), squeeze=False)
    ds.multiple_bar_chart(LINKS,
                          values_mse,
                          title=f'Hierarchical MSE',
                          xlabel='metric',
                          ylabel='MSE',
                          ax=ax[0, 0])
    ds.multiple_bar_chart(LINKS,
                          values_mae,
                          title=f'Hierarchical MAE',
                          xlabel='metric',
                          ylabel='MAE',
                          ax=ax[0, 1])
    ds.multiple_bar_chart(LINKS,
                          values_sc,
                          title=f'Hierarchical SC',
                          xlabel='metric',
                          ylabel='SC',
                          ax=ax[0, 2],
                          percentage=True)
    ds.multiple_bar_chart(LINKS,
                          values_db,
                          title=f'Hierarchical DB',
                          xlabel='metric',
                          ylabel='DB',
                          ax=ax[0, 3])
    plt.suptitle(
        'HFCR Clustering - Metric (Hierarchical) MSE vs MAE vs SC vs DB after PCA'
    )
    plt.savefig(
        subDir +
        'HFCR Clustering - Metric (Hierarchical) MSE vs MAE vs SC vs DB after PCA'
    )

    plt.close("all")
    plt.clf()