Ejemplo n.º 1
0
    def test_k3_peaks_periodic(self):
        """Tests the correct peak locations and intensities are found for the
        k=3 term in periodic systems.
        """
        scale = 0.85
        desc = LMBTR(
            species=["H"],
            k3={
                "geometry": {"function": "angle"},
                "grid": {"min": 0, "max": 180, "sigma": 5, "n": 2000},
                "weighting": {"function": "exp", "scale": scale, "cutoff": 1e-3},
            },
            normalize_gaussians=False,
            periodic=True,
            flatten=True,
            sparse=False
        )

        atoms = Atoms(
            cell=[
                [10, 0, 0],
                [0, 10, 0],
                [0, 0, 10],
            ],
            symbols=3*["H"],
            scaled_positions=[
                [0.05, 0.40, 0.5],
                [0.05, 0.60, 0.5],
                [0.95, 0.5, 0.5],
            ],
            pbc=True
        )
        features = desc.create(atoms, [0])[0, :]
        x = desc.get_k3_axis()

        # Calculate assumed locations and intensities.
        assumed_locs = np.array([45, 90])
        dist = 2+2*np.sqrt(2)  # The total distance around the three atoms
        weight = np.exp(-scale*dist)
        assumed_ints = np.array([weight, weight])

        # Check the X-H-H peaks
        xhh_feat = features[desc.get_location(("X", "H", "H"))]
        xhh_peak_indices = find_peaks(xhh_feat, prominence=0.01)[0]
        xhh_peak_locs = x[xhh_peak_indices]
        xhh_peak_ints = xhh_feat[xhh_peak_indices]
        self.assertTrue(np.allclose(xhh_peak_locs, assumed_locs, rtol=0, atol=1e-1))
        self.assertTrue(np.allclose(xhh_peak_ints, assumed_ints, rtol=0, atol=1e-1))

        # Calculate assumed locations and intensities.
        assumed_locs = np.array([45])
        dist = 2+2*np.sqrt(2)  # The total distance around the three atoms
        weight = np.exp(-scale*dist)
        assumed_ints = np.array([weight])

        # Check the H-X-H peaks
        hxh_feat = features[desc.get_location(("H", "X", "H"))]
        hxh_peak_indices = find_peaks(hxh_feat, prominence=0.01)[0]
        hxh_peak_locs = x[hxh_peak_indices]
        hxh_peak_ints = hxh_feat[hxh_peak_indices]
        self.assertTrue(np.allclose(hxh_peak_locs, assumed_locs, rtol=0, atol=1e-1))
        self.assertTrue(np.allclose(hxh_peak_ints, assumed_ints, rtol=0, atol=1e-1))

        # Check that everything else is zero
        features[desc.get_location(("X", "H", "H"))] = 0
        features[desc.get_location(("H", "X", "H"))] = 0
        self.assertEqual(features.sum(), 0)
Ejemplo n.º 2
0
mbtr = LMBTR(
    species=[11, 17],
    k=[2, 3],
    periodic=True,
    virtual_positions=False,
    grid={
        "k1": {
            "min": 10,
            "max": 18,
            "sigma": 0.1,
            "n": 200,
        },
        "k2": {
            "min": 0,
            "max": 0.7,
            "sigma": 0.01,
            "n": 200,
        },
        "k3": {
            "min": -1.0,
            "max": 1.0,
            "sigma": 0.05,
            "n": 200,
        }
    },
    weighting={
        "k2": {
            "function": "exponential",
            "scale": decay_factor,
            "cutoff": 1e-3
        },
        "k3": {
            "function": "exponential",
            "scale": decay_factor,
            "cutoff": 1e-3
        },
    },
    sparse=False,
    flatten=False
)
Ejemplo n.º 3
0
default_k2 = {
    "geometry": {"function": "inverse_distance"},
    "grid": {"min": 0, "max": 1/0.7, "sigma": 0.1, "n": nk2},
    "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-2},
}

default_k3 = {
    "geometry": {"function": "angle"},
    "grid": {"min": 0, "max": 180, "sigma": 2, "n": 50},
    "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-2},
}

default_desc_k2 = LMBTR(
    species=[1, 8],
    k2=default_k2,
    periodic=False,
    flatten=True,
    sparse=False,
)

default_desc_k3 = LMBTR(
    species=[1, 8],
    k3=default_k3,
    periodic=False,
    flatten=True,
    sparse=False,
)

default_desc_k2_k3 = LMBTR(
    species=[1, 8],
    k2=default_k2,
Ejemplo n.º 4
0
    def test_symmetries(self):
        """LMBTR: Tests translational and rotational symmetries for a finite system.
        """
        desc = LMBTR(species=[1, 8],
                     k=[1, 2, 3],
                     periodic=False,
                     grid={
                         "k1": {
                             "min": 10,
                             "max": 18,
                             "sigma": 0.1,
                             "n": 100,
                         },
                         "k2": {
                             "min": 0,
                             "max": 0.7,
                             "sigma": 0.01,
                             "n": 100,
                         },
                         "k3": {
                             "min": -1.0,
                             "max": 1.0,
                             "sigma": 0.05,
                             "n": 100,
                         }
                     },
                     weighting={
                         "k2": {
                             "function": "exponential",
                             "scale": 0.5,
                             "cutoff": 1e-3
                         },
                         "k3": {
                             "function": "exponential",
                             "scale": 0.5,
                             "cutoff": 1e-3
                         },
                     },
                     virtual_positions=False,
                     flatten=True)

        def create_1(system):
            """This function uses atom indices so rotation and translation
            should not affect it.
            """
            return desc.create(system, positions=[0])

        def create_2(system):
            """This function uses scaled positions so atom permutation should
            not affect it.
            """
            desc.virtual_positions = True
            return desc.create(system,
                               positions=[[0, 1, 0]],
                               scaled_positions=True)

        # Rotational check
        self.assertTrue(self.is_rotationally_symmetric(create_1))

        # Translational
        self.assertTrue(self.is_translationally_symmetric(create_1))

        # Permutational
        self.assertTrue(self.is_permutation_symmetric(create_2))
Ejemplo n.º 5
0
    def test_k3_peaks_finite(self):
        """Tests the correct peak locations and intensities are found for the
        k=3 term in finite systems.
        """
        desc = LMBTR(species=["H", "O"],
                     k3={
                         "geometry": {
                             "function": "angle"
                         },
                         "grid": {
                             "min": -10,
                             "max": 180,
                             "sigma": 5,
                             "n": 2000
                         },
                         "weighting": {
                             "function": "unity"
                         },
                     },
                     normalize_gaussians=False,
                     periodic=False,
                     flatten=True,
                     sparse=False)
        features = desc.create(H2O, [0])[0, :]
        x = desc.get_k3_axis()

        # Check the X-H-O peaks
        xho_assumed_locs = np.array([38])
        xho_assumed_ints = np.array([1])
        xho_feat = features[desc.get_location(("X", "H", "O"))]
        xho_peak_indices = find_peaks(xho_feat, prominence=0.5)[0]
        xho_peak_locs = x[xho_peak_indices]
        xho_peak_ints = xho_feat[xho_peak_indices]
        self.assertTrue(
            np.allclose(xho_peak_locs, xho_assumed_locs, rtol=0, atol=5e-2))
        self.assertTrue(
            np.allclose(xho_peak_ints, xho_assumed_ints, rtol=0, atol=5e-2))

        # Check the X-O-H peaks
        xoh_assumed_locs = np.array([104])
        xoh_assumed_ints = np.array([1])
        xoh_feat = features[desc.get_location(("X", "O", "H"))]
        xoh_peak_indices = find_peaks(xoh_feat, prominence=0.5)[0]
        xoh_peak_locs = x[xoh_peak_indices]
        xoh_peak_ints = xoh_feat[xoh_peak_indices]
        self.assertTrue(
            np.allclose(xoh_peak_locs, xoh_assumed_locs, rtol=0, atol=5e-2))
        self.assertTrue(
            np.allclose(xoh_peak_ints, xoh_assumed_ints, rtol=0, atol=5e-2))

        # Check the H-X-O peaks
        hxo_assumed_locs = np.array([38])
        hxo_assumed_ints = np.array([1])
        hxo_feat = features[desc.get_location(("H", "X", "O"))]
        hxo_peak_indices = find_peaks(hxo_feat, prominence=0.5)[0]
        hxo_peak_locs = x[hxo_peak_indices]
        hxo_peak_ints = hxo_feat[hxo_peak_indices]
        self.assertTrue(
            np.allclose(hxo_peak_locs, hxo_assumed_locs, rtol=0, atol=5e-2))
        self.assertTrue(
            np.allclose(hxo_peak_ints, hxo_assumed_ints, rtol=0, atol=5e-2))

        # Check that everything else is zero
        features[desc.get_location(("X", "H", "O"))] = 0
        features[desc.get_location(("X", "O", "H"))] = 0
        features[desc.get_location(("H", "X", "O"))] = 0
        self.assertEqual(features.sum(), 0)
Ejemplo n.º 6
0
    def test_parallel_sparse(self):
        """Tests creating sparse output parallelly.
        """
        # Test indices
        samples = [molecule("CO"), molecule("N2O")]
        desc = LMBTR(species=[6, 7, 8],
                     k=[2],
                     grid={"k2": {
                         "n": 100,
                         "min": 0,
                         "max": 2,
                         "sigma": 0.1
                     }},
                     virtual_positions=False,
                     periodic=False,
                     flatten=True,
                     sparse=True)
        n_features = desc.get_number_of_features()

        # Multiple systems, serial job
        output = desc.create(
            system=samples,
            positions=[[0], [0, 1]],
            n_jobs=1,
        ).toarray()
        assumed = np.empty((3, n_features))
        assumed[0, :] = desc.create(samples[0], [0]).toarray()
        assumed[1, :] = desc.create(samples[1], [0]).toarray()
        assumed[2, :] = desc.create(samples[1], [1]).toarray()
        self.assertTrue(np.allclose(output, assumed))

        # Test when position given as indices
        output = desc.create(
            system=samples,
            positions=[[0], [0, 1]],
            n_jobs=2,
        ).toarray()
        assumed = np.empty((3, n_features))
        assumed[0, :] = desc.create(samples[0], [0]).toarray()
        assumed[1, :] = desc.create(samples[1], [0]).toarray()
        assumed[2, :] = desc.create(samples[1], [1]).toarray()
        self.assertTrue(np.allclose(output, assumed))

        # Test with cartesian positions. In this case virtual positions have to
        # be enabled
        desc = LMBTR(species=[6, 7, 8],
                     k=[2],
                     grid={"k2": {
                         "n": 100,
                         "min": 0,
                         "max": 2,
                         "sigma": 0.1
                     }},
                     virtual_positions=True,
                     periodic=False,
                     flatten=True,
                     sparse=True)
        output = desc.create(
            system=samples,
            positions=[[[0, 0, 0], [1, 2, 0]], [[1, 2, 0]]],
            n_jobs=2,
        ).toarray()
        assumed = np.empty((2 + 1, n_features))
        assumed[0, :] = desc.create(samples[0], [[0, 0, 0]]).toarray()
        assumed[1, :] = desc.create(samples[0], [[1, 2, 0]]).toarray()
        assumed[2, :] = desc.create(samples[1], [[1, 2, 0]]).toarray()
        self.assertTrue(np.allclose(output, assumed))
Ejemplo n.º 7
0
    def test_number_of_features(self):
        """LMBTR: Tests that the reported number of features is correct.
        """
        # K = 1
        n = 100
        atomic_numbers = [1, 8]
        n_elem = len(atomic_numbers) + 1  # Including ghost atom
        lmbtr = LMBTR(
            species=atomic_numbers,
            k=[1],
            grid={"k1": {
                "min": 1,
                "max": 8,
                "sigma": 0.1,
                "n": 100,
            }},
            virtual_positions=False,
            periodic=False,
            flatten=True)
        n_features = lmbtr.get_number_of_features()
        expected = n_elem * n
        self.assertEqual(n_features, expected)

        # K = 2
        lmbtr = LMBTR(species=atomic_numbers,
                      k={1, 2},
                      grid={
                          "k1": {
                              "min": 1,
                              "max": 8,
                              "sigma": 0.1,
                              "n": 100,
                          },
                          "k2": {
                              "min": 0,
                              "max": 1 / 0.7,
                              "sigma": 0.1,
                              "n": n,
                          }
                      },
                      virtual_positions=False,
                      periodic=False,
                      flatten=True)
        n_features = lmbtr.get_number_of_features()
        expected = n_elem * n + 1 / 2 * (n_elem) * (n_elem + 1) * n
        self.assertEqual(n_features, expected)

        # K = 3
        lmbtr = LMBTR(species=atomic_numbers,
                      k={3},
                      grid={
                          "k1": {
                              "min": 1,
                              "max": 8,
                              "sigma": 0.1,
                              "n": 100,
                          },
                          "k2": {
                              "min": 0,
                              "max": 1 / 0.7,
                              "sigma": 0.1,
                              "n": n,
                          },
                          "k3": {
                              "min": -1,
                              "max": 1,
                              "sigma": 0.1,
                              "n": n,
                          }
                      },
                      virtual_positions=False,
                      periodic=False,
                      flatten=True)
        n_features = lmbtr.get_number_of_features()
        expected = n_elem * 1 / 2 * (n_elem) * (n_elem + 1) * n
        self.assertEqual(n_features, expected)
Ejemplo n.º 8
0
    def test_positions(self):
        """Tests that the position argument is handled correctly. The position
        can be a list of integers or a list of 3D positions.
        """
        decay_factor = 0.5
        lmbtr = LMBTR(species=[1, 8],
                      k=[1, 2],
                      grid={
                          "k1": {
                              "min": 10,
                              "max": 18,
                              "sigma": 0.1,
                              "n": 200,
                          },
                          "k2": {
                              "min": 0,
                              "max": 0.7,
                              "sigma": 0.01,
                              "n": 200,
                          },
                          "k3": {
                              "min": -1.0,
                              "max": 1.0,
                              "sigma": 0.05,
                              "n": 200,
                          }
                      },
                      weighting={
                          "k2": {
                              "function": "exponential",
                              "scale": decay_factor,
                              "cutoff": 1e-3
                          },
                          "k3": {
                              "function": "exponential",
                              "scale": decay_factor,
                              "cutoff": 1e-3
                          },
                      },
                      periodic=True,
                      virtual_positions=True,
                      flatten=False,
                      sparse=False)

        # Position as a cartesian coordinate in list
        lmbtr.create(H2O, positions=[[0, 1, 0]])

        # Position as a cartesian coordinate in numpy array
        lmbtr.create(H2O, positions=np.array([[0, 1, 0]]))

        # Position as a scaled coordinate in list
        lmbtr.create(H2O, positions=[[0, 0, 0.5]], scaled_positions=True)

        # Position as a scaled coordinate in numpy array
        lmbtr.create(H2O,
                     positions=np.array([[0, 0, 0.5]]),
                     scaled_positions=True)

        # Positions as lists of vectors
        positions = [[0, 1, 2], [0, 0, 0]]
        desc = lmbtr.create(H2O, positions)

        # Position outside range
        with self.assertRaises(ValueError):
            lmbtr.create(H2O, positions=[3])

        # Invalid data type
        with self.assertRaises(ValueError):
            lmbtr.create(H2O, positions=['a'])

        # Cannot use scaled positions without cell information
        with self.assertRaises(ValueError):
            H = Atoms(
                positions=[[0, 0, 0]],
                symbols=["H"],
            )

            lmbtr.create(H, positions=[[0, 0, 1]], scaled_positions=True)

        # Non-virtual positions
        lmbtr = LMBTR(species=[1, 8],
                      k=[3],
                      grid=default_grid,
                      virtual_positions=False,
                      periodic=False,
                      flatten=True)

        # Positions as a list of integers pointing to atom indices
        positions = [0, 1, 2]
        desc = lmbtr.create(H2O, positions)
Ejemplo n.º 9
0
def main(fxyz, dictxyz, prefix, output, per_atom, config_path, periodic):
    """

    Generate the LMBTR Representation.

    Parameters
    ----------
    fxyz: string giving location of xyz file
    dictxyz: string giving location of xyz file that is used as a dictionary
    prefix: string giving the filename prefix
    output: [xyz]: append the representations to extended xyz file; [mat] output as a standlone matrix
    input_path': string Specify the Kn parameters using a json file. (see https://singroup.github.io/dscribe/tutorials/lmbtr.html)
    periodic: string (True or False) indicating whether the system is periodic
    """

    periodic = bool(periodic)
    per_atom = bool(per_atom)
    fframes = []
    dictframes = []

    # read frames
    if fxyz != 'none':
        fframes = read(fxyz, ':')
        nfframes = len(fframes)
        print("read xyz file:", fxyz, ", a total of", nfframes, "frames")
    # read frames in the dictionary
    if dictxyz != 'none':
        dictframes = read(dictxyz, ':')
        ndictframes = len(dictframes)
        print("read xyz file used for a dictionary:", dictxyz, ", a total of",
              ndictframes, "frames")

    frames = dictframes + fframes
    nframes = len(frames)
    global_species = []
    for frame in frames:
        global_species.extend(frame.get_atomic_numbers())
        if not periodic:
            frame.set_pbc([False, False, False])
    global_species = np.unique(global_species)
    print("a total of", nframes, "frames, with elements: ", global_species)
    if config_path:
        try:
            with open(config_path, 'r') as config_file:
                config = json.load(config_file)
        except Exception:
            raise IOError('Cannot load the json file for parameters')

    if config_path:
        rep_atomic = LMBTR(species=global_species,
                           periodic=periodic,
                           flatten=True,
                           **config)
    else:
        rep_atomic = LMBTR(species=global_species,
                           flatten=True,
                           periodic=periodic)
    if config_path:
        foutput = prefix + '-' + config_path
        desc_name = "LMBTR" + '-' + config_path
    else:
        foutput = prefix
        desc_name = "LMBTR"

    # prepare for the output
    if os.path.isfile(foutput + ".xyz"):
        os.rename(foutput + ".xyz", "bck." + foutput + ".xyz")
    if os.path.isfile(foutput + ".desc"):
        os.rename(foutput + ".desc", "bck." + foutput + ".desc")

    for i, frame in enumerate(frames):
        fnow = rep_atomic.create(frame)
        frame.info[desc_name] = fnow.mean(axis=0)

        # save
        if output == 'matrix':
            with open(foutput + ".desc", "ab") as f:
                np.savetxt(f, frame.info[desc_name][None])
            if per_atom or nframes == 1:
                with open(foutput + ".atomic-desc", "ab") as fatomic:
                    np.savetxt(fatomic, fnow)
        elif output == 'xyz':
            # output per-atom info
            if per_atom:
                frame.new_array(desc_name, fnow)
            # write xyze
            write(foutput + ".xyz", frame, append=True)
        else:
            raise ValueError('Cannot find the output format')
Ejemplo n.º 10
0
import numpy as np
from dscribe.descriptors import LMBTR
from ase.build import bulk
from ase.visualize import view
import matplotlib.pyplot as mpl

# Setup
lmbtr = LMBTR(
    species=["H", "O"],
    k2={
        "geometry": {"function": "distance"},
        "grid": {"min": 0, "max": 5, "n": 100, "sigma": 0.1},
        "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-3},
    },
    k3={
        "geometry": {"function": "angle"},
        "grid": {"min": 0, "max": 180, "n": 100, "sigma": 0.1},
        "weighting": {"function": "exponential", "scale": 0.5, "cutoff": 1e-3},
    },
    periodic=False,
    normalization="l2_each",
)

# Create
from ase.build import molecule

water = molecule("H2O")

# Create MBTR output for the system
mbtr_water = lmbtr.create(water, positions=[0])