def spend(withdrawal_keys, deposit_keys, tx, mu): witness = prepare_witness(withdrawal_keys, deposit_keys) witness_list = [ witness.d_ijk, witness.x_i, witness.a_in, witness.a_ij, witness.r_in, witness.r_out ] # this is so we can flatten for commitment t = dumb25519.random_scalar() C = dumb25519.pedersen_commit(dumb25519.flatten(witness_list), t) s = dumb25519.hash_to_scalar(str(C) + str(tx) + str(mu))
def verify(proofs,N): # determine the length of the longest proof max_MN = 2**max([len(proof[7]) for proof in proofs]) # curve points Z = dumb25519.Z G = dumb25519.G H = dumb25519.H Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)]) Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)]) # verify that all points are in the correct subgroup for item in dumb25519.flatten(proofs): if not isinstance(item,Point): continue if not item*Scalar(dumb25519.l) == Z: raise ArithmeticError # set up weighted aggregates y0 = Scalar(0) y1 = Scalar(0) Y2 = Z Y3 = Z Y4 = Z Z0 = Z z1 = Scalar(0) Z2 = Z z3 = Scalar(0) z4 = [Scalar(0)]*max_MN z5 = [Scalar(0)]*max_MN # run through each proof for proof in proofs: clear_cache() V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof # get size information M = 2**len(L)/N # weighting factor for batching w = random_scalar() # reconstruct all challenges for v in V: mash(v) mash(A) mash(S) y = cache mash('') z = cache mash(T1) mash(T2) x = cache mash(taux) mash(mu) mash(t) x_ip = cache y0 += taux*w k = (z-z**2)*sum_scalar(y,M*N) for j in range(1,M+1): k -= (z**(j+2))*sum_scalar(Scalar(2),N) y1 += (t-k)*w Temp = Z for j in range(M): Temp += V[j]*(z**(j+2)*Scalar(8)) Y2 += Temp*w Y3 += T1*(x*w*Scalar(8)) Y4 += T2*((x**2)*w*Scalar(8)) Z0 += (A*Scalar(8)+S*(x*Scalar(8)))*w # inner product W = [] for i in range(len(L)): mash(L[i]) mash(R[i]) W.append(cache) for i in range(M*N): index = i g = a h = b*((y.invert())**i) for j in range(len(L)-1,-1,-1): J = len(W)-j-1 base_power = 2**j if index/base_power == 0: g *= W[J].invert() h *= W[J] else: g *= W[J] h *= W[J].invert() index -= base_power g += z h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y.invert())**i) z4[i] += g*w z5[i] += h*w z1 += mu*w Multiexp = [] for i in range(len(L)): Multiexp.append([L[i],Scalar(8)*(W[i]**2)]) Multiexp.append([R[i],Scalar(8)*(W[i].invert()**2)]) Z2 += dumb25519.multiexp(Multiexp)*w z3 += (t-a*b)*x_ip*w # now check all proofs together if not G*y0 + H*y1 - Y2 - Y3 - Y4 == Z: raise ArithmeticError('Bad y check!') Multiexp = [[Z0,Scalar(1)],[G,-z1],[Z2,Scalar(1)],[H,z3]] for i in range(max_MN): Multiexp.append([Gi[i],-z4[i]]) Multiexp.append([Hi[i],-z5[i]]) if not dumb25519.multiexp(Multiexp) == Z: raise ArithmeticError('Bad z check!') return True
def test_flatten(self): L = [0,[[1],2,3],[4,5,6],[[[7,8],9],10,11],12] self.assertEqual(dumb25519.flatten(L),range(13))