Ejemplo n.º 1
0
def spend(withdrawal_keys, deposit_keys, tx, mu):
    witness = prepare_witness(withdrawal_keys, deposit_keys)
    witness_list = [
        witness.d_ijk, witness.x_i, witness.a_in, witness.a_ij, witness.r_in,
        witness.r_out
    ]  # this is so we can flatten for commitment

    t = dumb25519.random_scalar()
    C = dumb25519.pedersen_commit(dumb25519.flatten(witness_list), t)

    s = dumb25519.hash_to_scalar(str(C) + str(tx) + str(mu))
Ejemplo n.º 2
0
def verify(proofs,N):
    # determine the length of the longest proof
    max_MN = 2**max([len(proof[7]) for proof in proofs])

    # curve points
    Z = dumb25519.Z
    G = dumb25519.G
    H = dumb25519.H
    Gi = PointVector([hash_to_point('pybullet Gi ' + str(i)) for i in range(max_MN)])
    Hi = PointVector([hash_to_point('pybullet Hi ' + str(i)) for i in range(max_MN)])

    # verify that all points are in the correct subgroup
    for item in dumb25519.flatten(proofs):
        if not isinstance(item,Point):
            continue
        if not item*Scalar(dumb25519.l) == Z:
            raise ArithmeticError

    # set up weighted aggregates
    y0 = Scalar(0)
    y1 = Scalar(0)
    Y2 = Z
    Y3 = Z
    Y4 = Z
    Z0 = Z
    z1 = Scalar(0)
    Z2 = Z
    z3 = Scalar(0)
    z4 = [Scalar(0)]*max_MN
    z5 = [Scalar(0)]*max_MN

    # run through each proof
    for proof in proofs:
        clear_cache()

        V,A,S,T1,T2,taux,mu,L,R,a,b,t = proof

        # get size information
        M = 2**len(L)/N

        # weighting factor for batching
        w = random_scalar()

        # reconstruct all challenges
        for v in V:
            mash(v)
        mash(A)
        mash(S)
        y = cache
        mash('')
        z = cache
        mash(T1)
        mash(T2)
        x = cache
        mash(taux)
        mash(mu)
        mash(t)
        x_ip = cache

        y0 += taux*w
        
        k = (z-z**2)*sum_scalar(y,M*N)
        for j in range(1,M+1):
            k -= (z**(j+2))*sum_scalar(Scalar(2),N)

        y1 += (t-k)*w

        Temp = Z
        for j in range(M):
            Temp += V[j]*(z**(j+2)*Scalar(8))
        Y2 += Temp*w
        Y3 += T1*(x*w*Scalar(8))
        Y4 += T2*((x**2)*w*Scalar(8))

        Z0 += (A*Scalar(8)+S*(x*Scalar(8)))*w

        # inner product
        W = []
        for i in range(len(L)):
            mash(L[i])
            mash(R[i])
            W.append(cache)

        for i in range(M*N):
            index = i
            g = a
            h = b*((y.invert())**i)
            for j in range(len(L)-1,-1,-1):
                J = len(W)-j-1
                base_power = 2**j
                if index/base_power == 0:
                    g *= W[J].invert()
                    h *= W[J]
                else:
                    g *= W[J]
                    h *= W[J].invert()
                    index -= base_power

            g += z
            h -= (z*(y**i) + (z**(2+i/N))*(Scalar(2)**(i%N)))*((y.invert())**i)

            z4[i] += g*w
            z5[i] += h*w

        z1 += mu*w

        Multiexp = []
        for i in range(len(L)):
            Multiexp.append([L[i],Scalar(8)*(W[i]**2)])
            Multiexp.append([R[i],Scalar(8)*(W[i].invert()**2)])
        Z2 += dumb25519.multiexp(Multiexp)*w
        z3 += (t-a*b)*x_ip*w
    
    # now check all proofs together
    if not G*y0 + H*y1 - Y2 - Y3 - Y4 == Z:
        raise ArithmeticError('Bad y check!')

    Multiexp = [[Z0,Scalar(1)],[G,-z1],[Z2,Scalar(1)],[H,z3]]
    for i in range(max_MN):
        Multiexp.append([Gi[i],-z4[i]])
        Multiexp.append([Hi[i],-z5[i]])
    if not dumb25519.multiexp(Multiexp) == Z:
        raise ArithmeticError('Bad z check!')

    return True
Ejemplo n.º 3
0
 def test_flatten(self):
     L = [0,[[1],2,3],[4,5,6],[[[7,8],9],10,11],12]
     self.assertEqual(dumb25519.flatten(L),range(13))