Ejemplo n.º 1
0
 def recon_kernel(sinogram, detec):
     sinogram = np.maximum(sinogram, 0.0)
     if recon_method == 'fbp':
         recon = reconstruction2d(sinogram, detec, phan_spec)
     elif recon_method == 'sart':
         from dxpy.debug.utils import dbgmsg
         dbgmsg('USING SART !!!!!!!!!!')
         recon = reconstruction2d(sinogram,
                                  detec,
                                  phan_spec,
                                  method='SART_CUDA',
                                  iterations=500)
     recon = np.maximum(recon, 0.0)
     recon = recon / np.sum(recon) * 1e6
     return recon
Ejemplo n.º 2
0
def dataset_generator(fields=('sinogram', ), ids=None):
    if ids is None:
        ids = range(0, int(NB_IMAGES * 0.8))
        ids = list(ids)
        import random
        random.shuffle(ids)
    if isinstance(fields, str):
        fields = (fields, )
    from dxpy.debug.utils import dbgmsg
    dbgmsg(ids[0], ids[1], ids[10], ids[-1])
    fn_sino, fn_recon, fn_recon_ms = _h5files()
    with open_file(fn_sino) as h5sino, open_file(
            fn_recon) as h5recon, open_file(fn_recon_ms) as h5recon_ms:
        for idx in ids:
            result = _get_example(idx, fields, h5sino, h5recon, h5recon_ms)
            result = _post_processing(result)
            yield result
Ejemplo n.º 3
0
 def _processing(self, tensors):
     from dxpy.learn.model.metrics import mse
     with tf.name_scope("processing"):
         result = {k: tensors[k] for k in tensors}
         res_inf = tf.abs(result['label'] - result['infer'])
         res_itp = tf.abs(result['label'] - result['interp'])
         dif_inf_itp = tf.abs(result['infer'] - result['interp'])
         result['res_inf'] = res_inf
         result['res_itp'] = res_itp
         result['dif_inf_itp'] = dif_inf_itp
         result['mse_inf'] = mse(result['label'], result['infer'])
         result['mse_itp'] = mse(result['label'], result['interp'])
         result['mse_inf_to_itp_ratio'] = result['mse_inf'] / \
             result['mse_itp']
     from dxpy.debug.utils import dbgmsg
     dbgmsg(result)
     return super()._processing(result)
Ejemplo n.º 4
0
    def _kernel(self, feeds):
        from dxpy.debug.utils import dbgmsg
        dbgmsg(self.param('mean'))
        dbgmsg(self.param('std'))

        label = feeds[NodeKeys.LABEL]
        infer = feeds[NodeKeys.INPUT]
        with tf.name_scope('denorm_white'):
            label = label * \
                tf.constant(self.param('std')) + \
                tf.constant(self.param('mean'))
            infer = infer * \
                tf.constant(self.param('std')) + \
                tf.constant(self.param('mean'))
        if self.param('with_log'):
            with tf.name_scope('denorm_log_for_data'):
                infer = tf.exp(infer)
            with tf.name_scope('loss'):
                loss = log_possion_loss(label, infer)
        else:
            with tf.name_scope('loss'):
                loss = poission_loss(label, infer)
        return {NodeKeys.MAIN: loss}
Ejemplo n.º 5
0
def train_with_monitored_session(network, is_chief=True, target=None, steps=10000000000000):
    from dxpy.learn.utils.general import pre_work
    from dxpy.learn.session import set_default_session
    from tqdm import tqdm
    import time
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    hooks = []
    # hooks.append(tf.train.StepCounterHook())
    trainer = network['trainer']
    if 'sync_hook' in trainer.nodes:
        sync_hook = trainer['sync_hook']
        hooks.append(sync_hook)
    from dxpy.debug.utils import dbgmsg
    dbgmsg(hooks)
    with tf.train.MonitoredTrainingSession(master=target, config=config, checkpoint_dir='./save', hooks=hooks, is_chief=is_chief) as sess:
        dbgmsg('SESS CREATED')
        set_default_session(sess)
        dbgmsg('BEFORE RESET')
        network.nodes['trainer'].run('set_learning_rate')
        dbgmsg('LR RESET')
        for _ in tqdm(range(steps)):
            network.train()
Ejemplo n.º 6
0
def grid_view(images,
              windows=None,
              scale=1.0,
              cmap=None,
              *,
              max_columns=None,
              max_rows=None,
              hide_axis=True,
              hspace=0.1,
              wspace=0.1,
              return_figure=False,
              dpi=None,
              adjust_figure_size=True,
              save_filename=None,
              invert_row_column=False,
              scale_factor=2.0,
              _top=None,
              _right=None):
    import matplotlib.pyplot as plt
    import matplotlib.gridspec as gridspec
    from matplotlib.figure import SubplotParams
    """ subplot list of images of multiple categories into grid subplots

    Args:
        image_lists: list of [list of images or 4D tensor]
        windows: list of windows
        nb_column: columns of images
    Returns:
        Return figure if return_figure is true, else None.
    """
    images = _unified_images(images, invert_row_column)
    windows = _unified_windows(images, windows)
    images, windows = _adjust_images_to_fit_nb_columns(images, windows,
                                                       max_columns, max_rows)
    figsize, default_dpi = _adjust_figure_size(images, scale, scale_factor)
    from dxpy.debug.utils import dbgmsg
    dbgmsg(figsize, default_dpi)
    dbgmsg(images.shape)
    if dpi is None:
        dpi = default_dpi
    dpi = dpi * scale
    fig = plt.figure(figsize=figsize,
                     dpi=dpi,
                     subplotpars=SubplotParams(left=0.0,
                                               right=1.0,
                                               bottom=0.0,
                                               top=1.0,
                                               wspace=0.0,
                                               hspace=0.0))
    # fig.subplots_adjust(hspace=hspace, wspace=wspace)
    nr, nc = images.shape
    if _top is None:
        # _top = figsize[1] / nr * nc
        _top = scale
    if _right is None:
        _right = figsize[0] / nc * nr
        _right = scale
    gs = gridspec.GridSpec(nr,
                           nc,
                           wspace=wspace,
                           hspace=hspace,
                           top=_top,
                           bottom=0.0,
                           left=0.0,
                           right=_right)
    for ir in range(nr):
        for ic in range(nc):
            if images[ir, ic] is None:
                continue
            # ax = plt.subplot(nr, nc, ir * nc + ic + 1)
            ax = plt.subplot(gs[ir, ic])
            ax.imshow(images[ir, ic],
                      cmap=cmap,
                      vmin=windows[ir, ic, 0],
                      vmax=windows[ir, ic, 1])
            if hide_axis:
                plt.axis('off')
            else:
                ax.set_xticklabels([])
                ax.set_yticklabels([])
    if save_filename is not None:
        fig.savefig(save_filename)
    if return_figure:
        return fig
Ejemplo n.º 7
0
def infer_mice(dataset, nb_samples, output):
    import numpy as np
    import tensorflow as tf
    from dxpy.learn.dataset.api import get_dataset
    from dxpy.learn.net.api import get_network
    from dxpy.learn.utils.general import load_yaml_config, pre_work
    from dxpy.learn.session import Session
    from dxpy.numpy_extension.visual import grid_view
    from tqdm import tqdm
    pre_work()
    input_data = np.load(
        '/home/hongxwing/Workspace/NetInference/Mice/mice_test_data.npz')
    input_data = {k: np.array(input_data[k]) for k in input_data}
    dataset_origin = get_dataset('dataset/srms')
    is_low_dose = dataset_origin.param('low_dose')
    from dxpy.debug.utils import dbgmsg
    dbgmsg('IS LOW DOSE: ', is_low_dose)
    for k in input_data:
        print(k, input_data[k].shape)
    input_keys = ['input/image{}x'.format(2**i) for i in range(4)]
    label_keys = ['label/image{}x'.format(2**i) for i in range(4)]
    shapes = [[1] + list(input_data['clean/image{}x'.format(2**i)].shape)[1:] +
              [1] for i in range(4)]
    inputs = {
        input_keys[i]: tf.placeholder(tf.float32,
                                      shapes[i],
                                      name='input{}x'.format(2**i))
        for i in range(4)
    }
    labels = {
        label_keys[i]: tf.placeholder(tf.float32,
                                      shapes[i],
                                      name='label{}x'.format(2**i))
        for i in range(4)
    }
    dataset = dict(inputs)
    dataset.update(labels)
    network = get_network('network/srms', dataset=dataset)
    nb_down_sample = network.param('nb_down_sample')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.train.MonitoredTrainingSession(checkpoint_dir='./save',
                                             config=config,
                                             save_checkpoint_secs=None)

    if not is_low_dose:
        prefix = 'clean/image'
    else:
        prefix = 'noise/image'

    def get_feed(idx):
        #     return dict()
        data_raw = input_data['{}{}x'.format(prefix, 2**nb_down_sample)][idx,
                                                                         ...]
        data_raw = np.reshape(data_raw, [1] + list(data_raw.shape) + [1])
        data_label = input_data['{}1x'.format(prefix)][idx, ...]
        data_label = np.reshape(data_label, [1] + list(data_label.shape) + [1])
        return {
            dataset['input/image{}x'.format(2**nb_down_sample)]: data_raw,
            dataset['input/image1x'.format(2**nb_down_sample)]: data_label,
            dataset['label/image1x'.format(2**nb_down_sample)]: data_label,
        }

    to_run = {
        'inf': network['outputs/inference'],
        'itp': network['outputs/interp'],
        'high': network['input/image1x'],
        #     'li': network['outputs/loss_itp'],
        #     'ls': network['outputs/loss'],
        #     'la': network['outputs/aligned_label']
    }

    def crop(data, target):
        if len(data.shape) == 4:
            data = data[0, :, :, 0]
        o1 = data.shape[0] // 2
        o2 = (data.shape[1] - target[1]) // 2
        return data[o1:o1 + target[0], o2:-o2]

    MEAN = 100.0
    STD = 150.0
    if is_low_dose:
        MEAN /= dataset_origin.param('low_dose_ratio')
        STD /= dataset_origin.param('low_dose_ratio')
    NB_IMAGES = nb_samples

    def get_infer(idx):
        result = sess.run(to_run, feed_dict=get_feed(idx))
        inf = crop(result['inf'], [320, 64])
        itp = crop(result['itp'], [320, 64])
        high = crop(input_data['{}1x'.format(prefix)][idx, ...], [320, 64])
        low = crop(
            input_data['{}{}x'.format(prefix, 2**nb_down_sample)][idx, ...],
            [320 // (2**nb_down_sample), 64 // (2**nb_down_sample)])

        high = high * STD + MEAN
        low = low * STD + MEAN
        inf = inf * STD + MEAN
        itp = itp * STD + MEAN
        high = np.pad(high, [[0, 0], [32, 32]], mode='constant')
        low = np.pad(low, [[0, 0], [32 // (2**nb_down_sample)] * 2],
                     mode='constant')
        inf = np.pad(inf, [[0, 0], [32, 32]], mode='constant')
        # inf = np.maximum(inf, 0.0)
        itp = np.pad(itp, [[0, 0], [32, 32]], mode='constant')
        return high, low, inf, itp

    results = {'high': [], 'low': [], 'inf': [], 'itp': []}
    for i in tqdm(range(NB_IMAGES)):
        high, low, inf, itp = get_infer(i)
        results['high'].append(high)
        results['low'].append(low)
        results['inf'].append(inf)
        results['itp'].append(itp)

    np.savez(output, **results)
Ejemplo n.º 8
0
def infer_sino_sr(dataset, nb_samples, output):
    """
    Use network in current directory as input for inference
    """
    import tensorflow as tf
    from dxpy.learn.dataset.api import get_dataset
    from dxpy.learn.net.api import get_network
    from dxpy.configs import ConfigsView
    from dxpy.learn.config import config
    import numpy as np
    import yaml
    from dxpy.debug.utils import dbgmsg
    dbgmsg(dataset)
    data_raw = np.load(dataset)
    data_raw = {k: np.array(data_raw[k]) for k in data_raw.keys()}
    config_view = ConfigsView(config)

    def tensor_shape(key):
        shape_origin = data_raw[key].shape
        return [1] + list(shape_origin[1:3]) + [1]

    with tf.name_scope('inputs'):
        keys = ['input/image{}x'.format(2**i) for i in range(4)]
        keys += ['label/image{}x'.format(2**i) for i in range(4)]
        dataset = {
            k: tf.placeholder(tf.float32, tensor_shape(k))
            for k in keys
        }

    network = get_network('network/srms', dataset=dataset)
    nb_down_sample = network.param('nb_down_sample')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.train.MonitoredTrainingSession(checkpoint_dir='./save',
                                             config=config,
                                             save_checkpoint_secs=None)

    STAT_STD = 9.27
    STAT_MEAN = 9.76
    BASE_SHAPE = (640, 320)

    dataset_configs = config_view['dataset']['srms']
    with_noise = dataset_configs['with_poission_noise']
    if with_noise:
        PREFIX = 'input'
    else:
        PREFIX = 'label'

    def crop_sinogram(tensor, target_shape=None):
        if target_shape is None:
            target_shape = BASE_SHAPE
        if len(tensor.shape) == 4:
            tensor = tensor[0, :, :, 0]
        o1 = (tensor.shape[0] - target_shape[0]) // 2
        o2 = (tensor.shape[1] - target_shape[1]) // 2
        return tensor[o1:-o1, o2:-o2]

    def run_infer(idx):
        input_key = '{}/image{}x'.format(PREFIX, 2**nb_down_sample)
        low_sino = np.reshape(data_raw[input_key][idx, :, :],
                              tensor_shape(input_key))
        low_sino = (low_sino - STAT_MEAN) / STAT_STD
        feeds = {dataset['input/image{}x'.format(2**nb_down_sample)]: low_sino}
        inf, itp = sess.run(
            [network['outputs/inference'], network['outputs/interp']],
            feed_dict=feeds)
        infc = crop_sinogram(inf)
        itpc = crop_sinogram(itp)
        infc = infc * STAT_STD + STAT_MEAN
        itpc = itpc * STAT_STD + STAT_MEAN
        return infc, itpc

    phans = []
    sino_highs = []
    sino_lows = []
    sino_itps = []
    sino_infs = []
    NB_MAX = data_raw['phantom'].shape[0]
    for idx in tqdm(range(nb_samples), ascii=True):
        if idx > NB_MAX:
            import sys
            print(
                'Index {} out of range {}, stop running and store current result...'
                .format(idx, NB_MAX),
                file=sys.stderr)
            break

        phans.append(data_raw['phantom'][idx, ...])
        sino_highs.append(
            crop_sinogram(data_raw['{}/image1x'.format(PREFIX)][idx, :, :]))
        sino_lows.append(
            crop_sinogram(
                data_raw['{}/image{}x'.format(PREFIX, 2**nb_down_sample)][idx,
                                                                          ...],
                [s // (2**nb_down_sample) for s in BASE_SHAPE]))
        sino_inf, sino_itp = run_infer(idx)
        sino_infs.append(sino_inf)
        sino_itps.append(sino_itp)

    results = {
        'phantom': phans,
        'sino_itps': sino_itps,
        'sino_infs': sino_infs,
        'sino_highs': sino_highs,
        'sino_lows': sino_lows
    }
    np.savez(output, **results)
Ejemplo n.º 9
0
def infer_mct(dataset, nb_samples, output):
    """
    Use network in current directory as input for inference
    """
    import tensorflow as tf
    from dxpy.learn.dataset.api import get_dataset
    from dxpy.learn.net.api import get_network
    from dxpy.configs import ConfigsView
    from dxpy.learn.config import config
    import numpy as np
    import yaml
    from dxpy.debug.utils import dbgmsg
    print('Using dataset file:', dataset)
    data_raw = np.load(dataset)
    data_raw = {k: np.array(data_raw[k]) for k in data_raw.keys()}
    config_view = ConfigsView(config)

    def data_key(nd):
        return 'image{}x'.format(2**nd)

    def tensor_shape(key):
        shape_origin = data_raw[key].shape
        return [1] + list(shape_origin[1:3]) + [1]

    with tf.name_scope('inputs'):
        keys = ['input/image{}x'.format(2**i) for i in range(4)]
        keys += ['label/image{}x'.format(2**i) for i in range(4)]
        dataset = {
            k: tf.placeholder(tf.float32, tensor_shape(data_key(i % 4)))
            for i, k in enumerate(keys)
        }

    network = get_network('network/srms', dataset=dataset)
    nb_down_sample = network.param('nb_down_sample')
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.train.MonitoredTrainingSession(checkpoint_dir='./save',
                                             config=config,
                                             save_checkpoint_secs=None)

    STAT_MEAN = 9.93
    STAT_STD = 7.95
    STAT_MEAN_LOW = 9.93 * (4.0**nb_down_sample)
    STAT_STD_LOW = 7.95 * (4.0**nb_down_sample)
    BASE_SHAPE = (384, 384)

    def crop_image(tensor, target_shape=None):
        if target_shape is None:
            target_shape = BASE_SHAPE
        if len(tensor.shape) == 4:
            tensor = tensor[0, :, :, 0]
        # o1 = (tensor.shape[0] - target_shape[0]) // 2
        o1 = tensor.shape[0] // 2
        o2 = (tensor.shape[1] - target_shape[1]) // 2
        return tensor[o1:o1 + target_shape[0], o2:-o2]

    input_key = data_key(nb_down_sample)
    dbgmsg('input_key:', input_key)

    def run_infer(idx):
        low_phan = np.reshape(data_raw[input_key][idx, :, :],
                              tensor_shape(input_key))
        # low_phan = (low_phan - STAT_MEAN) / STAT_STD
        feeds = {dataset['input/image{}x'.format(2**nb_down_sample)]: low_phan}
        inf, itp = sess.run(
            [network['outputs/inference'], network['outputs/interp']],
            feed_dict=feeds)
        infc = crop_image(inf)
        itpc = crop_image(itp)
        infc = infc * STAT_STD_LOW + STAT_MEAN_LOW
        itpc = itpc * STAT_STD_LOW + STAT_MEAN_LOW
        return infc, itpc

    phans = []
    img_highs = []
    img_lows = []
    img_itps = []
    img_infs = []
    NB_MAX = data_raw['phantom'].shape[0]
    for idx in tqdm(range(nb_samples), ascii=True):
        if idx > NB_MAX:
            import sys
            print(
                'Index {} out of range {}, stop running and store current result...'
                .format(idx, NB_MAX),
                file=sys.stderr)
            break

        phans.append(data_raw['phantom'][idx, ...])
        img_high = crop_image(data_raw[data_key(0)][idx, :, :])
        img_high = img_high * STAT_STD + STAT_MEAN
        # img_high = img_high * STAT_STD / \
        # (4.0**nb_down_sample) + STAT_MEAN / (4.0**nb_down_sample)
        img_highs.append(img_high)
        img_low = crop_image(data_raw[data_key(nb_down_sample)][idx, ...],
                             [s // (2**nb_down_sample) for s in BASE_SHAPE])
        img_low = img_low * STAT_STD_LOW + STAT_MEAN_LOW
        img_lows.append(img_low)
        img_inf, img_itp = run_infer(idx)
        img_infs.append(img_inf)
        img_itps.append(img_itp)

    img_highs = np.array(img_highs)
    img_infs = np.array(img_infs) / (4.0**nb_down_sample)
    img_itps = np.array(img_itps) / (4.0**nb_down_sample)
    img_lows = np.array(img_lows) / (4.0**nb_down_sample)

    results = {
        'phantom': phans,
        'sino_itps': img_itps,
        'sino_infs': img_infs,
        'sino_highs': img_highs,
        'sino_lows': img_lows
    }
    np.savez(output, **results)