Ejemplo n.º 1
0
  def tst_json(self):

    filenames = self.multiple_block_filenames()
    blocks1 = DataBlockFactory.from_filenames(filenames)
    blocks2 = self.encode_json_then_decode(blocks1)
    assert(len(blocks2) == len(blocks1))
    for b1, b2 in zip(blocks1, blocks2):
      assert(b1.format_class() == b2.format_class())
      assert(b1 == b2)
    assert(blocks1 == blocks2)

    filenames = self.multiple_block_filenames()
    blocks1 = DataBlockFactory.from_filenames(filenames)
    blocks2 = self.encode_json_then_decode(blocks1, check_format=False)
    assert(len(blocks2) == len(blocks1))
    for b1, b2 in zip(blocks1, blocks2):
      for im1, im2 in zip(b1.extract_imagesets(), b2.extract_imagesets()):
        assert(len(im1) == len(im2))
        if isinstance(im1, ImageSweep):
          assert(isinstance(im2, ImageSweep))
          assert(im1.get_beam() == im2.get_beam())
          assert(im1.get_detector() == im2.get_detector())
          assert(im1.get_goniometer() == im2.get_goniometer())
          assert(im1.get_scan() == im2.get_scan())
        else:
          assert(not isinstance(im2, ImageSweep))
          for i in xrange(len(im1)):
            assert(im1.get_beam(i) == im2.get_beam(i))
            assert(im1.get_detector(i) == im2.get_detector(i))

    print 'OK'
def test_cbf_writer(image_file, dials_regression, run_in_tmpdir):
    filename = os.path.join(dials_regression, image_file)
    datablock = DataBlockFactory.from_filenames([filename])[0]
    imageset = datablock.extract_imagesets()[0]

    FormatCBFMini.as_file(
        imageset.get_detector(),
        imageset.get_beam(),
        imageset.get_goniometer(),
        imageset.get_scan(),
        imageset.get_raw_data(0)[0],
        "image_0001.cbf",
    )

    assert datablock.format_class()

    datablock2 = DataBlockFactory.from_filenames(["image_0001.cbf"])[0]
    imageset2 = datablock2.extract_imagesets()[0]

    tolerance = tolerance_phil_scope.extract().tolerance

    diff = SweepDiff(tolerance)
    print("\n".join(diff(imageset, imageset2)))

    assert BeamComparison()(imageset.get_beam(), imageset2.get_beam())
    assert DetectorComparison(origin_tolerance=tolerance.detector.origin)(
        imageset.get_detector(), imageset2.get_detector())
    assert GoniometerComparison()(imageset.get_goniometer(),
                                  imageset2.get_goniometer())
    s1 = imageset.get_scan()
    s2 = imageset.get_scan()
    assert s1.get_exposure_times() == s2.get_exposure_times()
    assert s1.get_oscillation() == s2.get_oscillation()
    assert s1.get_image_range() == s2.get_image_range()
    assert imageset.get_raw_data(0) == imageset2.get_raw_data(0)
Ejemplo n.º 3
0
  def tst_json(self):
    from dxtbx.datablock import DataBlockFactory
    from dxtbx.imageset import ImageSweep

    filenames = self.multiple_block_filenames()
    blocks1 = DataBlockFactory.from_filenames(filenames)
    blocks2 = self.encode_json_then_decode(blocks1)
    assert(len(blocks2) == len(blocks1))
    for b1, b2 in zip(blocks1, blocks2):
      assert(b1.format_class() == b2.format_class())
      assert(b1 == b2)
    assert(blocks1 == blocks2)

    filenames = self.multiple_block_filenames()
    blocks1 = DataBlockFactory.from_filenames(filenames)
    blocks2 = self.encode_json_then_decode(blocks1, check_format=False)
    assert(len(blocks2) == len(blocks1))
    for b1, b2 in zip(blocks1, blocks2):
      for im1, im2 in zip(b1.extract_imagesets(), b2.extract_imagesets()):
        assert(len(im1) == len(im2))
        if isinstance(im1, ImageSweep):
          assert(isinstance(im2, ImageSweep))
          assert(im1.get_beam() == im2.get_beam())
          assert(im1.get_detector() == im2.get_detector())
          assert(im1.get_goniometer() == im2.get_goniometer())
          assert(im1.get_scan() == im2.get_scan())
        else:
          assert(not isinstance(im2, ImageSweep))
          for i in xrange(len(im1)):
            assert(im1.get_beam(i) == im2.get_beam(i))
            assert(im1.get_detector(i) == im2.get_detector(i))

    print 'OK'
def test_VMXi_rotation_scan():
    master_h5 = "/dls/mx/data/mx21314/mx21314-27/VMXi-AB0816/well_7/images/image_14364_master.h5"
    assert FormatNexus.understand(master_h5)

    datablocks = DataBlockFactory.from_filenames([master_h5])
    imageset = datablocks[0].extract_imagesets()[0]
    assert imageset.get_format_class() == FormatNexus

    detector = imageset.get_detector()
    gonio = imageset.get_goniometer()
    scan = imageset.get_scan()
    beam = imageset.get_beam()

    panel = detector[0]
    assert panel.get_pixel_size() == (0.075, 0.075)
    assert panel.get_image_size() == (2068, 2162)
    assert panel.get_trusted_range() == (-1, 4096)
    assert panel.get_fast_axis() == (1, 0, 0)
    assert panel.get_slow_axis() == (0, -1, 0)
    assert panel.get_origin() == pytest.approx(
        (-78.05999999999999, 87.03, -194.5039999999999)
    )
    assert panel.get_distance() == pytest.approx(194.504)

    assert isinstance(gonio, Goniometer)
    assert gonio.get_rotation_axis() == (0, 1, 0)
    assert gonio.get_fixed_rotation() == (1, 0, 0, 0, 1, 0, 0, 0, 1)
    assert gonio.get_setting_rotation() == (1, 0, 0, 0, 1, 0, 0, 0, 1)

    assert scan.get_oscillation() == pytest.approx((-30, 0.1))
    assert scan.get_image_range() == (1, 600)

    assert beam.get_wavelength() == pytest.approx(0.979492)
    assert beam.get_s0() == pytest.approx((0, 0, -1 / beam.get_wavelength()))
Ejemplo n.º 5
0
 def run(self, idx, img):
     if os.path.isfile(self.term_file):
         raise IOTATermination('IOTA_TRACKER: Termination signal received!')
     else:
         datablock = DataBlockFactory.from_filenames([img])[0]
         observed = self.processor.find_spots(datablock=datablock)
         return [idx, int(len(observed)), img, None, None]
def test_split_single_image_datablock(dials_regression, tmpdir):
    tmpdir.chdir()
    pytest.importorskip("h5py")
    sacla_file = os.path.join(
        dials_regression,
        "image_examples",
        "SACLA_MPCCD_Cheetah",
        "run266702-0-subset.h5",
    )
    db = DataBlockFactory.from_filenames([sacla_file])[0]
    assert db.num_images() == 4
    imageset = db.extract_imagesets()[0]
    subset = imageset[2:3]
    subblock = DataBlockFactory.from_imageset(subset)[0]
    assert subblock.num_images() == 1
    assert get_indices(subblock) == [2]

    dumped_filename = "split_datablock.json"
    dump = DataBlockDumper(subblock)
    dump.as_json(dumped_filename)

    db = DataBlockFactory.from_json_file(dumped_filename, check_format=True)[0]
    assert db.num_images() == 1
    assert get_indices(db) == [2]

    db = DataBlockFactory.from_json_file(dumped_filename,
                                         check_format=False)[0]
    assert db.num_images() == 1
    assert get_indices(db) == [2]
Ejemplo n.º 7
0
    def exercise_one_image(path, count_only_shadow, count_mask_shadow,
                           count_mask_no_shadow):

        from dxtbx.datablock import DataBlockFactory
        assert os.path.exists(path), path
        for shadowing in (libtbx.Auto, True, False):
            format_kwargs = {'dynamic_shadowing': shadowing}
            datablock = DataBlockFactory.from_filenames(
                [path], format_kwargs=format_kwargs)[0]
            imageset = datablock.extract_imagesets()[0]
            detector = imageset.get_detector()
            scan = imageset.get_scan()
            filename = imageset.get_path(0)
            masker = imageset.masker().format_class(
                filename, **format_kwargs).get_goniometer_shadow_masker()
            assert masker is not None
            mask = masker.get_mask(detector,
                                   scan_angle=scan.get_oscillation()[0])
            assert len(mask) == len(detector)
            # only shadowed pixels masked
            assert mask[0].count(False) == count_only_shadow, (
                mask[0].count(False), count_only_shadow)
            mask = imageset.get_mask(0)
            # dead pixels, pixels in gaps, etc also masked
            if shadowing is libtbx.Auto or shadowing is True:
                assert mask[0].count(False) == count_mask_shadow, (
                    mask[0].count(False), count_mask_shadow)
            else:
                assert mask[0].count(False) == count_mask_no_shadow, (
                    mask[0].count(False), count_mask_no_shadow)
def test_grid_scan():
    master_h5 = "/dls/i04/data/2019/cm23004-1/20190109/Eiger/grid/Thaum/Thau_5/Thau_5_1_master.h5"
    assert FormatNexusEigerDLS16MI04.understand(master_h5)

    datablocks = DataBlockFactory.from_filenames([master_h5])
    imageset = datablocks[0].extract_imagesets()[0]
    assert imageset.get_format_class() == FormatNexusEigerDLS16MI04

    detector = imageset.get_detector()
    gonio = imageset.get_goniometer()
    scan = imageset.get_scan()
    beam = imageset.get_beam()

    panel = detector[0]
    assert panel.get_pixel_size() == (0.075, 0.075)
    assert panel.get_image_size() == (4148, 4362)
    assert panel.get_trusted_range() == (-1, 65535)
    assert panel.get_fast_axis() == (1, 0, 0)
    assert panel.get_slow_axis() == (0, -1, 0)
    assert panel.get_origin() == pytest.approx(
        (-167.44717577120824, 172.46833023184868, -350.0))
    assert panel.get_distance() == 350

    assert len(gonio.get_axes()) == 3
    expected_axes = ((1, 0, 0), (0, 0, -1), (1, 0, 0))
    for a1, a2 in zip(gonio.get_axes(), expected_axes):
        assert a1 == pytest.approx(a2, abs=5e-2)
    # assert gonio.get_scan_axis() == 2

    assert scan is None

    assert beam.get_wavelength() == pytest.approx(0.979499)
    assert beam.get_s0() == pytest.approx((0, 0, -1 / beam.get_wavelength()))
def test_units():
    master_h5 = "/dls/i04/data/2019/cm23004-1/20190114/Eiger/grid/Se_Thaum/Se_Thaum_12/Se_Thaum_12_2_master.h5"
    assert FormatNexusEigerDLS16MI04.understand(master_h5)

    datablocks = DataBlockFactory.from_filenames([master_h5])
    imageset = datablocks[0].extract_imagesets()[0]
    assert imageset.get_format_class() == FormatNexusEigerDLS16MI04

    detector = imageset.get_detector()
    gonio = imageset.get_goniometer()
    scan = imageset.get_scan()
    beam = imageset.get_beam()

    panel = detector[0]
    assert panel.get_pixel_size() == (0.075, 0.075)
    assert panel.get_fast_axis() == (1, 0, 0)
    assert panel.get_slow_axis() == (0, -1, 0)
    # XXX Need to check and update expected values here, however the ones
    # dxtbx is currently generating from the file are very wrong
    assert panel.get_origin() == pytest.approx(
        (-167.35570274412459, 172.4729262553403, -339.9887931971389))
    assert panel.get_distance() == pytest.approx(339.9887931971389)

    assert scan is None

    assert beam.get_wavelength() == pytest.approx(0.979499)
    assert beam.get_s0() == pytest.approx((0, 0, -1 / beam.get_wavelength()))
    assert panel.get_beam_centre_px(beam.get_s0()) == pytest.approx(
        (2231.41, 2299.64))
Ejemplo n.º 10
0
def test_rotation_scan(master_h5):
    assert FormatNexusEigerDLS16MI04.understand(master_h5)

    datablocks = DataBlockFactory.from_filenames(
        [master_h5], format_kwargs={"dynamic_shadowing": True})
    imageset = datablocks[0].extract_imagesets()[0]
    assert imageset.get_format_class() == FormatNexusEigerDLS16MI04

    detector = imageset.get_detector()
    gonio = imageset.get_goniometer()
    scan = imageset.get_scan()
    beam = imageset.get_beam()

    panel = detector[0]
    assert panel.get_pixel_size() == (0.075, 0.075)
    assert panel.get_image_size() == (4148, 4362)
    assert panel.get_trusted_range() == (-1, 65535)
    assert panel.get_fast_axis() == (1, 0, 0)
    assert panel.get_slow_axis() == (0, -1, 0)
    assert panel.get_origin() == pytest.approx(
        (-166.07661632390744, 172.5371934106162, -200.0))
    assert panel.get_distance() == 200

    assert len(gonio.get_axes()) == 3
    expected_axes = ((1, 0, 0), (0, 0, -1), (1, 0, 0))
    for a1, a2 in zip(gonio.get_axes(), expected_axes):
        assert a1 == pytest.approx(a2, abs=5e-2)
    assert gonio.get_scan_axis() == 2

    assert scan.get_oscillation() == (0, 0.2)
    assert scan.get_image_range() == (1, 900)

    assert beam.get_wavelength() == pytest.approx(0.979499)
    assert beam.get_s0() == pytest.approx((0, 0, -1 / beam.get_wavelength()))
Ejemplo n.º 11
0
 def from_filenames(
     filenames,
     verbose=False,
     unhandled=None,
     compare_beam=None,
     compare_detector=None,
     compare_goniometer=None,
     scan_tolerance=None,
     format_kwargs=None,
     load_models=True,
 ):
     """Create a list of data blocks from a list of directory or file names."""
     experiments = ExperimentList()
     for db in DataBlockFactory.from_filenames(
         filenames,
         verbose=verbose,
         unhandled=unhandled,
         compare_beam=compare_beam,
         compare_detector=compare_detector,
         compare_goniometer=compare_goniometer,
         scan_tolerance=scan_tolerance,
         format_kwargs=format_kwargs,
     ):
         experiments.extend(
             ExperimentListFactory.from_datablock_and_crystal(db, None, load_models)
         )
     return experiments
Ejemplo n.º 12
0
def exercise_dynamic_shadowing():
    if dials_regression is None:
        print 'SKIP: dials_regression not configured'
        return

    path = os.path.join(
        dials_regression,
        "shadow_test_data/DLS_I04_SmarGon/Th_3_O45_C45_P48_1_0500.cbf")

    from dxtbx.datablock import DataBlockFactory
    assert os.path.exists(path), path
    for shadowing in (libtbx.Auto, True, False):
        format_kwargs = {'dynamic_shadowing': shadowing}
        datablock = DataBlockFactory.from_filenames(
            [path], format_kwargs=format_kwargs)[0]
        imageset = datablock.extract_imagesets()[0]
        detector = imageset.get_detector()
        scan = imageset.get_scan()
        filename = imageset.get_path(0)
        masker = imageset.masker().format_class(
            filename, **format_kwargs).get_goniometer_shadow_masker()
        #masker = imageset.reader().get_format().get_goniometer_shadow_masker()
        assert masker is not None
        mask = masker.get_mask(detector, scan_angle=scan.get_oscillation()[0])
        assert len(mask) == len(detector)
        # only shadowed pixels masked
        assert (mask[0].count(True), mask[0].count(False)) == (5797243, 426758)
        mask = imageset.get_mask(0)
        # dead pixels, pixels in gaps, etc also masked
        if shadowing is libtbx.Auto or shadowing is True:
            assert (mask[0].count(True), mask[0].count(False)) == (5306061,
                                                                   917940)
        else:
            assert (mask[0].count(True), mask[0].count(False)) == (5695969,
                                                                   528032)
Ejemplo n.º 13
0
def do_import(filename):
    logger.info("Loading %s" % os.path.basename(filename))
    datablocks = DataBlockFactory.from_filenames([filename])
    if len(datablocks) == 0:
        try:
            datablocks = DataBlockFactory.from_json_file(filename)
        except ValueError:
            raise Abort("Could not load %s" % filename)

    if len(datablocks) == 0:
        raise Abort("Could not load %s" % filename)
    if len(datablocks) > 1:
        raise Abort("Got multiple datablocks from file %s" % filename)

    # Ensure the indexer and downstream applications treat this as set of stills
    reset_sets = []

    from dxtbx.imageset import ImageSetFactory
    for imageset in datablocks[0].extract_imagesets():
        imageset = ImageSetFactory.imageset_from_anyset(imageset)
        imageset.set_scan(None)
        imageset.set_goniometer(None)
        reset_sets.append(imageset)

    return DataBlockFactory.from_imageset(reset_sets)[0]
Ejemplo n.º 14
0
def test_spring8_ccp4_2018_zenodo_1443110_data03():
    # https://zenodo.org/record/1443110#.XD8bD5ynzmE
    master_h5 = "/dls/mx-scratch/rjgildea/zenodo/spring8-ccp4-2018/1443110/ccp4school2018_bl41xu/05/data03/data03_master.h5"
    assert FormatHDF5EigerNearlyNexusSPring8.understand(master_h5)

    datablocks = DataBlockFactory.from_filenames([master_h5])
    imageset = datablocks[0].extract_imagesets()[0]
    assert imageset.get_format_class() == FormatHDF5EigerNearlyNexusSPring8

    detector = imageset.get_detector()
    gonio = imageset.get_goniometer()
    scan = imageset.get_scan()
    beam = imageset.get_beam()

    panel = detector[0]
    assert panel.get_pixel_size() == pytest.approx((0.075, 0.075))
    assert panel.get_image_size() == (4150, 4371)
    assert panel.get_trusted_range() == (-1, 2.094707e06)
    assert panel.get_fast_axis() == (1, 0, 0)
    assert panel.get_slow_axis() == (0, -1, 0)
    assert panel.get_origin() == pytest.approx((-151.939, 169.629, -180),
                                               abs=1e-3)
    assert panel.get_distance() == pytest.approx(180)

    assert isinstance(gonio, Goniometer)
    assert gonio.get_rotation_axis() == (-1, 0, 0)
    assert gonio.get_fixed_rotation() == (1, 0, 0, 0, 1, 0, 0, 0, 1)
    assert gonio.get_setting_rotation() == (1, 0, 0, 0, 1, 0, 0, 0, 1)

    assert scan.get_oscillation() == pytest.approx((-10, 1))
    assert scan.get_image_range() == (1, 180)

    assert beam.get_wavelength() == pytest.approx(1.28241, abs=1e-5)
    assert beam.get_s0() == pytest.approx((0, 0, -1 / beam.get_wavelength()))
Ejemplo n.º 15
0
def failover_hdf5(hdf5_file):
    from dxtbx.serialize import xds
    from dxtbx.datablock import DataBlockFactory
    import time
    t0 = time.time()
    db = DataBlockFactory.from_filenames([hdf5_file])[0]
    sweep = db.extract_sweeps()[0]
    t1 = time.time()
    if version == 2:
        try:
            write('Reading %s took %.2fs' % (hdf5_file, t1 - t0))
        except:
            pass
    else:
        write('Reading {} took {:.2f}s'.format(hdf5_file, t1 - t0))
    d = sweep.get_detector()
    s = sweep.get_scan()
    g = sweep.get_goniometer()
    b = sweep.get_beam()

    # returns slow, fast, convention here is reverse
    size = tuple(reversed(d[0].get_image_size()))

    size0k_to_class = {
        1: 'eiger 1M',
        2: 'eiger 4M',
        3: 'eiger 9M',
        4: 'eiger 16M'
    }

    header = {}

    header['detector_class'] = size0k_to_class[int(size[0] / 1000)]
    header['detector'] = size0k_to_class[int(size[0] / 1000)].upper().replace(
        ' ', '_')
    header['size'] = size
    header['serial_number'] = 0
    header['extra_text'] = find_hdf5_lib()

    header['phi_start'] = s.get_angle_from_image_index(1.0, deg=True)
    header['phi_end'] = s.get_angle_from_image_index(2.0, deg=True)
    header['phi_width'] = header['phi_end'] - header['phi_start']
    header['oscillation'] = header['phi_start'], header['phi_width']
    header['exposure_time'] = s.get_exposure_times()[0]
    header['oscillation_axis'] = 'Omega_I_guess'
    header['distance'] = d[0].get_distance()
    header['wavelength'] = b.get_wavelength()
    header['pixel'] = d[0].get_pixel_size()
    header['saturation'] = d[0].get_trusted_range()[1]
    header['sensor'] = d[0].get_thickness()
    header['beam'] = d[0].get_beam_centre(b.get_s0())
    images = s.get_image_range()
    directory, template = os.path.split(hdf5_file)
    header['directory'] = directory
    header['template'] = template.replace('master', '??????')
    header['start'] = images[0]
    header['end'] = images[1]
    header['matching'] = range(images[0], images[1] + 1)
    return header
Ejemplo n.º 16
0
def test_pickling(multiple_block_filenames):
    blocks1 = DataBlockFactory.from_filenames(multiple_block_filenames, verbose=True)
    blocks2 = pickle_then_unpickle(blocks1)
    assert len(blocks2) == len(blocks1)
    for b1, b2 in zip(blocks1, blocks2):
        assert b1.format_class() == b2.format_class()
        assert b1 == b2
    assert blocks1 == blocks2
Ejemplo n.º 17
0
 def do_import(filename):
   info("Loading %s"%os.path.basename(filename))
   datablocks = DataBlockFactory.from_filenames([filename])
   if len(datablocks) == 0:
     raise Abort("Could not load %s"%filename)
   if len(datablocks) > 1:
     raise Abort("Got multiple datablocks from file %s"%filename)
   return datablocks[0]
Ejemplo n.º 18
0
def test_screening():
    master_h5 = "/dls/i04/data/2019/cm23004-1/20190109/Eiger/gw-screen/Thaum/Thau_3/Thau_3_1_master.h5"
    assert FormatNexusEigerDLS16MI04.understand(master_h5)

    datablocks = DataBlockFactory.from_filenames([master_h5])
    imagesets = datablocks[0].extract_imagesets()
    assert len(imagesets) == 3
    assert imageset.get_format_class() == FormatNexusEigerDLS16MI04
Ejemplo n.º 19
0
def test_json(multiple_block_filenames):
    blocks1 = DataBlockFactory.from_filenames(multiple_block_filenames, verbose=True)
    blocks2 = encode_json_then_decode(blocks1)
    assert len(blocks2) == len(blocks1)
    for b1, b2 in zip(blocks1, blocks2):
        assert b1.format_class() == b2.format_class()
        assert b1 == b2
    assert blocks1 == blocks2
Ejemplo n.º 20
0
 def __init__(self, image=None, datablock=None):
   if (image is None and datablock is None):
     print 'ERROR: Need image or datablock for Radial Average Calculator'
     return
   if datablock is None:
     from dxtbx.datablock import DataBlockFactory
     self.datablock = DataBlockFactory.from_filenames([image])[0]
   else:
     self.datablock = datablock
Ejemplo n.º 21
0
    def get(self):
        args = self.reqparse.parse_args()

        h5exts = ['h5', 'nxs']

        dc = get_dc(args.dcid)
        if dc is None:
            abort(400, message='No such data collection')

        ext = os.path.splitext(str(
            dc.file_template_full_python))[1][1:].strip().lower()
        if ext in h5exts:
            file = str(dc.file_template_full_python)
        else:
            file = dc.file_template_full_python % args.image

        print 'file', file, ext

        if not os.path.exists(file):
            abort(400, message='No such file')

        datablocks = DataBlockFactory.from_filenames([file], verbose=True)
        if not len(datablocks):
            abort(400, message='Could not parse datablock')

        datablock = datablocks[0]
        imageset = datablock.extract_imagesets()[0]

        if ext in h5exts:
            image = imageset[(args.image - 1):args.image]
        else:
            image = imageset[0:1]

        params = phil_scope.extract()
        params.format = 'jpeg'

        if args.quality:
            params.quality = args.quality

        if args.binning:
            params.binning = args.binning

        params.output_dir = '/tmp'
        params.prefix = str(time.time())
        params.imageset_index = 0
        names = imageset_as_bitmaps(image, params)

        @after_this_request
        def remove_file(response):
            for n in names:
                if os.path.exists(n):
                    os.remove(n)

            return response

        return send_file(names[0])
Ejemplo n.º 22
0
def test_create_single_sweep(single_sweep_filenames):
    blocks = DataBlockFactory.from_filenames(single_sweep_filenames)
    assert len(blocks) == 1
    assert blocks[0].num_images() == 9
    imageset = blocks[0].extract_imagesets()
    assert len(imageset) == 1
    assert len(imageset[0]) == 9
    sweeps = blocks[0].extract_sweeps()
    assert len(sweeps) == 1
    assert len(sweeps[0]) == 9
Ejemplo n.º 23
0
def test_create_multiple_sweeps(multiple_sweep_filenames):
    blocks = DataBlockFactory.from_filenames(multiple_sweep_filenames)
    assert len(blocks) == 1
    assert blocks[0].num_images() == 6
    imageset = blocks[0].extract_imagesets()
    assert len(imageset) == 2
    sweeps = blocks[0].extract_sweeps()
    assert len(sweeps) == 2
    assert len(sweeps[0]) == 3
    assert len(sweeps[1]) == 3
Ejemplo n.º 24
0
 def loader(x):
   try:
     obj = DataBlockFactory.from_filenames([x])[0].extract_imagesets()[0]
   except IndexError:
     import dxtbx.datablock
     try:
       obj = DataBlockFactory.from_json_file(x)[0].extract_imagesets()[0]
     except dxtbx.datablock.InvalidDataBlockError:
       obj = ExperimentListFactory.from_json_file(x)[0].imageset
   return obj
Ejemplo n.º 25
0
 def spf_wrapper(self, img):
   if os.path.isfile(self.term_file):
     os.remove(self.term_file)
     raise IOTATermination('IOTA_TRACKER: Termination signal received!')
   else:
     if os.path.isfile(img):
       datablock = DataBlockFactory.from_filenames([img])[0]
       observed = self.processor.find_spots(datablock=datablock)
       return [int(self.data_list.index(img)), int(len(observed)), img]
     else:
       return [int(self.data_list.index(img)), 0, img]
Ejemplo n.º 26
0
def test_create_multiple_sequences(multiple_sequence_filenames):
    blocks = DataBlockFactory.from_filenames(multiple_sequence_filenames)
    assert len(blocks) == 1
    assert blocks[0].num_images() == 6
    assert blocks[0].format_class()
    imageset = blocks[0].extract_imagesets()
    assert len(imageset) == 2
    sequences = blocks[0].extract_sequences()
    assert len(sequences) == 2
    assert len(sequences[0]) == 3
    assert len(sequences[1]) == 3
Ejemplo n.º 27
0
  def tst_pickling(self):
    filenames = self.multiple_block_filenames()
    blocks1 = DataBlockFactory.from_filenames(filenames)
    blocks2 = self.pickle_then_unpickle(blocks1)
    assert(len(blocks2) == len(blocks1))
    for b1, b2 in zip(blocks1, blocks2):
      assert(b1.format_class() == b2.format_class())
      assert(b1 == b2)
    assert(blocks1 == blocks2)

    print 'OK'
Ejemplo n.º 28
0
def test_create_single_sequence(single_sequence_filenames):
    blocks = DataBlockFactory.from_filenames(single_sequence_filenames, verbose=True)
    assert len(blocks) == 1
    assert blocks[0].num_images() == 9
    assert blocks[0].format_class()
    imageset = blocks[0].extract_imagesets()
    assert len(imageset) == 1
    assert len(imageset[0]) == 9
    sequences = blocks[0].extract_sequences()
    assert len(sequences) == 1
    assert len(sequences[0]) == 9
Ejemplo n.º 29
0
def do_import(filename):
    logger.info("Loading %s" % os.path.basename(filename))
    try:
        datablocks = DataBlockFactory.from_json_file(filename)
    except ValueError:
        datablocks = DataBlockFactory.from_filenames([filename])
    if len(datablocks) == 0:
        raise Abort("Could not load %s" % filename)
    if len(datablocks) > 1:
        raise Abort("Got multiple datablocks from file %s" % filename)
    return datablocks[0]
Ejemplo n.º 30
0
def test_single_image_datablock(dials_regression):
    path = os.path.join(
        dials_regression,
        "image_examples",
        "LCLS_cspad_nexus",
        "idx-20130301060858401.cbf",
    )
    datablocks_cbf = DataBlockFactory.from_filenames([path])
    datablock_cbf = datablocks_cbf[0]
    imageset_cbf = datablock_cbf.extract_imagesets()[0]
    assert imageset_cbf.get_detector(0) is not None
Ejemplo n.º 31
0
 def tst_create_multiple_sweeps(self):
   filenames = self.multiple_sweep_filenames()
   blocks = DataBlockFactory.from_filenames(filenames)
   assert(len(blocks) == 1)
   assert(blocks[0].num_images() == 6)
   imageset = blocks[0].extract_imagesets()
   assert(len(imageset) == 2)
   sweeps = blocks[0].extract_sweeps()
   assert(len(sweeps) == 2)
   assert(len(sweeps[0]) == 3)
   assert(len(sweeps[1]) == 3)
   print 'OK'
Ejemplo n.º 32
0
 def tst_create_single_sweep(self):
   filenames = self.single_sweep_filenames()
   blocks = DataBlockFactory.from_filenames(filenames)
   assert(len(blocks) == 1)
   assert(blocks[0].num_images() == 9)
   imageset = blocks[0].extract_imagesets()
   assert(len(imageset) == 1)
   assert(len(imageset[0]) == 9)
   sweeps = blocks[0].extract_sweeps()
   assert(len(sweeps) == 1)
   assert(len(sweeps[0]) == 9)
   print 'OK'
Ejemplo n.º 33
0
  def __init__(self,
               source_image=None,
               object_folder=None,
               gain = 0.32,
               params=None):
    '''Initialise the script.'''
    from dials.util.options import OptionParser
    from dxtbx.datablock import DataBlockFactory
    from dials.array_family import flex

    from iotbx.phil import parse
    from xfel.command_line.xfel_process import phil_scope

    phil_scope = parse('''
      include scope xfel.command_line.xtc_process.phil_scope
    ''', process_includes=True)

    sub_phil_scope = parse('''
      output {
        cxi_merge_picklefile = None
          .type = str
          .help = Output integration results for each color data to separate cctbx.xfel-style pickle files
      }
      indexing {
        stills {
          ewald_proximity_resolution_cutoff = 2.0
            .type = float
            .help = For calculating the area under the green curve, or the acceptable
            .help = volume of reciprocal space for spot prediction, use this high-resolution cutoff
        }
      }
      cxi_merge {
        include scope xfel.command_line.cxi_merge.master_phil
      }
    ''', process_includes=True)

    phil_scope.adopt_scope(sub_phil_scope)

    # Create the parser
    self.parser = OptionParser(
      phil=phil_scope,
      read_datablocks=True,
      read_datablocks_from_images=True)

    self.params = params
    self.img = [source_image]
    self.obj_base = object_folder
    self.phil = phil_scope.extract()
    with misc.Capturing() as junk_output:
      self.datablock = DataBlockFactory.from_filenames(self.img)[0]

    self.obj_filename = "int_{}".format(os.path.basename(self.img[0]))
    self.phil.output.cxi_merge_picklefile = os.path.join(self.obj_base, self.img[0])
Ejemplo n.º 34
0
def work(filename, cl=[]):
  from dials.command_line.find_spots import phil_scope as params
  from dxtbx.datablock import DataBlockFactory
  from dials.array_family import flex
  interp = params.command_line_argument_interpreter()
  for cla in cl:
    params = params.fetch(interp.process(cla))
  datablock = DataBlockFactory.from_filenames([filename])[0]
  reflections = flex.reflection_table.from_observations(
    datablock, params.extract())
  detector = datablock.unique_detectors()[0]
  beam = datablock.unique_beams()[0]
  return analyse(reflections, detector, beam)
Ejemplo n.º 35
0
  def tst_pickling(self):

    from dxtbx.datablock import DataBlockFactory

    filenames = self.multiple_block_filenames()
    blocks1 = DataBlockFactory.from_filenames(filenames)
    blocks2 = self.pickle_then_unpickle(blocks1)
    assert(len(blocks2) == len(blocks1))
    for b1, b2 in zip(blocks1, blocks2):
      assert(b1.format_class() == b2.format_class())
      assert(b1 == b2)
    assert(blocks1 == blocks2)

    print 'OK'
Ejemplo n.º 36
0
  def tst_create_multiple_sweeps(self):

    from dxtbx.datablock import DataBlockFactory

    filenames = self.multiple_sweep_filenames()
    blocks = DataBlockFactory.from_filenames(filenames)
    assert(len(blocks) == 1)
    assert(blocks[0].num_images() == 6)
    imageset = blocks[0].extract_imagesets()
    assert(len(imageset) == 2)
    sweeps = blocks[0].extract_sweeps()
    assert(len(sweeps) == 2)
    assert(len(sweeps[0]) == 3)
    assert(len(sweeps[1]) == 3)
    print 'OK'
Ejemplo n.º 37
0
  def OnChooseDirectory (self, event) :
    dir_name = self.dir_ctrl.GetPhilValue()
    if (dir_name is not None) :
      from dxtbx.datablock import DataBlockFactory
      datablocks = DataBlockFactory.from_filenames([dir_name])
      imagesets = datablocks[0].extract_imagesets()

      self._imagesets = imagesets

      #from iotbx.detectors import identify_dataset
      #self._datasets = identify_dataset(dir_name)
      #choices = [ d.format() for d in self._datasets ]
      choices = [imgset.get_template() for imgset in self._imagesets]
      self.stack_ctrl.SetItems(choices)
      for i in range(len(choices)):
        self.stack_ctrl.SetSelection(i)
Ejemplo n.º 38
0
  def __init__(self,
               source_image,
               object_folder,
               final_folder,
               final_filename,
               final,
               logfile,
               gain = 0.32,
               params=None):
    '''Initialise the script.'''
    from dxtbx.datablock import DataBlockFactory

    self.params = params

    # Read settings from the DIALS target (.phil) file
    # If none is provided, use default settings (and may God have mercy)
    if self.params.dials.target != None:
      with open(self.params.dials.target, 'r') as settings_file:
        settings_file_contents = settings_file.read()
      settings = parse(settings_file_contents)
      current_phil = phil_scope.fetch(sources=[settings])
      self.phil = current_phil.extract()
    else:
      self.phil = phil_scope.extract()

   # Set general file-handling settings
    file_basename = os.path.basename(source_image).split('.')[0]
    self.phil.output.datablock_filename = "{}/{}.json".format(object_folder, file_basename)
    self.phil.output.indexed_filename = "{}/{}_indexed.pickle".format(object_folder, file_basename)
    self.phil.output.strong_filename = "{}/{}_strong.pickle".format(object_folder, file_basename)
    self.phil.output.refined_experiments_filename = "{}/{}_refined_experiments.json".format(object_folder, file_basename)
    self.phil.output.integrated_filename = "{}/{}_integrated.pickle".format(object_folder, file_basename)
    self.phil.output.profile_filename = "{}/{}_profile.phil".format(object_folder, file_basename)
    self.phil.output.integration_pickle = final_filename
    self.int_log = logfile #"{}/int_{}.log".format(final_folder, file_basename)

    self.img = [source_image]
    self.obj_base = object_folder
    self.gain = gain
    self.fail = None
    self.frame = None
    self.final = final
    self.final['final'] = final_filename
    with misc.Capturing() as junk_output:
      self.datablock = DataBlockFactory.from_filenames(self.img)[0]
    self.obj_filename = "int_{}".format(os.path.basename(self.img[0]))
Ejemplo n.º 39
0
  def try_read_datablocks_from_images(self,
                                      args,
                                      verbose,
                                      compare_beam,
                                      compare_detector,
                                      compare_goniometer,
                                      scan_tolerance,
                                      format_kwargs):
    '''
    Try to import images.

    :param args: The input arguments
    :param verbose: Print verbose output
    :return: Unhandled arguments

    '''
    from dxtbx.datablock import DataBlockFactory
    from dials.phil import FilenameDataWrapper, DataBlockConverters
    from glob import glob

    # If filenames contain wildcards, expand
    args_new = []
    for arg in args:
      if "*" in arg:
        args_new.extend(glob(arg))
      else:
        args_new.append(arg)
    args = args_new

    unhandled = []
    datablocks = DataBlockFactory.from_filenames(
      args,
      verbose=verbose,
      unhandled=unhandled,
      compare_beam=compare_beam,
      compare_detector=compare_detector,
      compare_goniometer=compare_goniometer,
      scan_tolerance=scan_tolerance,
      format_kwargs=format_kwargs)
    if len(datablocks) > 0:
      filename = "<image files>"
      obj = FilenameDataWrapper(filename, datablocks)
      DataBlockConverters.cache[filename] = obj
      self.datablocks.append(obj)
    return unhandled
Ejemplo n.º 40
0
  def tst_create_multiple_blocks(self):

    from dxtbx.datablock import DataBlockFactory

    filenames = self.multiple_block_filenames()
    blocks = DataBlockFactory.from_filenames(filenames, verbose=False)
    assert(len(blocks) == 22)

    # Block 1
    assert(blocks[0].num_images() == 9)
    imageset = blocks[0].extract_imagesets()
    assert(len(imageset) == 1)
    assert(len(imageset[0]) == 9)
    sweeps = blocks[0].extract_sweeps()
    assert(len(sweeps) == 1)
    assert(len(sweeps[0]) == 9)

    print 'OK'
Ejemplo n.º 41
0
  def __call__(self):
    '''
    Import the datablocks

    '''
    from dxtbx.datablock import DataBlockTemplateImporter
    from dxtbx.datablock import DataBlockFactory
    from dials.util.options import flatten_datablocks
    from libtbx.utils import Sorry

    # Get the datablocks
    datablocks = flatten_datablocks(self.params.input.datablock)

    # Check we have some filenames
    if len(datablocks) == 0:

      format_kwargs = {
        'dynamic_shadowing' : self.params.format.dynamic_shadowing
      }

      # Check if a template has been set and print help if not, otherwise try to
      # import the images based on the template input
      if len(self.params.input.template) > 0:
        importer = DataBlockTemplateImporter(
          self.params.input.template,
          max(self.params.verbosity-1, 0),
          format_kwargs=format_kwargs)
        datablocks = importer.datablocks
        if len(datablocks) == 0:
          raise Sorry('No datablocks found matching template %s' % self.params.input.template)
      elif len(self.params.input.directory) > 0:
        datablocks = DataBlockFactory.from_filenames(
          self.params.input.directory,
          max(self.params.verbosity-1, 0),
          format_kwargs=format_kwargs)
        if len(datablocks) == 0:
          raise Sorry('No datablocks found in directories %s' % self.params.input.directory)
      else:
        raise Sorry('No datablocks found')
    if len(datablocks) > 1:
      raise Sorry("More than 1 datablock found")

    # Return the datablocks
    return datablocks[0]
Ejemplo n.º 42
0
  def __init__(self, img, gain, params):
    """ Initialization and data read-in
    """
    from dxtbx.datablock import DataBlockFactory

    self.gain = gain
    self.params = params

    # Read settings from the DIALS target (.phil) file
    # If none is provided, use default settings (and may God have mercy)
    if self.params.dials.target != None:
      with open(self.params.dials.target, 'r') as settings_file:
        settings_file_contents = settings_file.read()
      settings = parse(settings_file_contents)
      current_phil = phil_scope.fetch(sources=[settings])
      self.phil = current_phil.extract()
    else:
      self.phil = phil_scope.extract()

    # Convert raw image into single-image datablock
    with misc.Capturing() as junk_output:
      self.datablock = DataBlockFactory.from_filenames([img])[0]
Ejemplo n.º 43
0
def do_import(filename):
  logger.info("Loading %s"%os.path.basename(filename))
  try:
    datablocks = DataBlockFactory.from_json_file(filename)
  except ValueError:
    datablocks = DataBlockFactory.from_filenames([filename])
  if len(datablocks) == 0:
    raise Abort("Could not load %s"%filename)
  if len(datablocks) > 1:
    raise Abort("Got multiple datablocks from file %s"%filename)

  # Ensure the indexer and downstream applications treat this as set of stills
  from dxtbx.imageset import ImageSet
  reset_sets = []

  for imageset in datablocks[0].extract_imagesets():
    imageset = ImageSet(imageset.reader(), imageset.indices())
    imageset._models = imageset._models
    imageset.set_scan(None)
    imageset.set_goniometer(None)
    reset_sets.append(imageset)

  return DataBlockFactory.from_imageset(reset_sets)[0]
Ejemplo n.º 44
0
  
  filenames = []
  for arg in args:
     if "indexing.data" in arg:
       path = arg.split('=')[1]
       if os.path.isdir(path):
         for subfile in os.listdir(path):
 	  subpath = os.path.join(path, subfile)
 	  if os.path.isfile(subpath):
             filenames.append(subpath)
       else:
         filenames.append(path)

  print filenames

  datablock = DataBlockFactory.from_filenames(filenames)[0]
 
  observed = flex.reflection_table.from_observations(datablock, params)
  observed.as_pickle("strong.pickle")
  print "Number of observed reflections:", len(observed)
 
  working_params = copy.deepcopy(params)
  imagesets = datablock.extract_imagesets()

# old labelit
#  from spotfinder.applications.xfel import cxi_phil
#  horizons_phil = cxi_phil.cxi_versioned_extract(args)


  print "indexing..."
  t0 = clock()
Ejemplo n.º 45
0
def run(args):
  from dials.util.options import OptionParser
  import libtbx.load_env

  usage = "%s [options] find_spots.json" %(
    libtbx.env.dispatcher_name)

  parser = OptionParser(
    usage=usage,
    phil=phil_scope,
    epilog=help_message)

  params, options, args = parser.parse_args(
    show_diff_phil=True, return_unhandled=True)

  positions = None
  if params.positions is not None:
    with open(params.positions, 'rb') as f:
      positions = flex.vec2_double()
      for line in f.readlines():
        line = line.replace('(', ' ').replace(')', '').replace(',', ' ').strip().split()
        assert len(line) == 3
        i, x, y = [float(l) for l in line]
        positions.append((x, y))

  assert len(args) == 1
  json_file = args[0]
  import json

  with open(json_file, 'rb') as f:
    results = json.load(f)

  n_indexed = flex.double()
  fraction_indexed = flex.double()
  n_spots = flex.double()
  n_lattices = flex.double()
  crystals = []
  image_names = flex.std_string()

  for r in results:
    n_spots.append(r['n_spots_total'])
    image_names.append(str(r['image']))
    if 'n_indexed' in r:
      n_indexed.append(r['n_indexed'])
      fraction_indexed.append(r['fraction_indexed'])
      n_lattices.append(len(r['lattices']))
      for d in r['lattices']:
        from dxtbx.serialize.crystal import from_dict
        crystals.append(from_dict(d['crystal']))
    else:
      n_indexed.append(0)
      fraction_indexed.append(0)
      n_lattices.append(0)

  import matplotlib
  matplotlib.use('Agg')
  from matplotlib import pyplot

  blue = '#3498db'
  red = '#e74c3c'

  marker = 'o'
  alpha = 0.5
  lw = 0

  plot = True
  table = True
  grid = params.grid

  from libtbx import group_args
  from dials.algorithms.peak_finding.per_image_analysis \
       import plot_stats, print_table

  estimated_d_min = flex.double()
  d_min_distl_method_1 = flex.double()
  d_min_distl_method_2 = flex.double()
  n_spots_total = flex.int()
  n_spots_no_ice = flex.int()
  total_intensity = flex.double()

  for d in results:
    estimated_d_min.append(d['estimated_d_min'])
    d_min_distl_method_1.append(d['d_min_distl_method_1'])
    d_min_distl_method_2.append(d['d_min_distl_method_2'])
    n_spots_total.append(d['n_spots_total'])
    n_spots_no_ice.append(d['n_spots_no_ice'])
    total_intensity.append(d['total_intensity'])

  stats = group_args(image=image_names,
                     n_spots_total=n_spots_total,
                     n_spots_no_ice=n_spots_no_ice,
                     n_spots_4A=None,
                     total_intensity=total_intensity,
                     estimated_d_min=estimated_d_min,
                     d_min_distl_method_1=d_min_distl_method_1,
                     d_min_distl_method_2=d_min_distl_method_2,
                     noisiness_method_1=None,
                     noisiness_method_2=None)

  if plot:
    plot_stats(stats)
    pyplot.clf()
  if table:
    print_table(stats)

  print "Number of indexed lattices: ", (n_indexed > 0).count(True)

  print "Number with valid d_min but failed indexing: ", (
    (d_min_distl_method_1 > 0) &
    (d_min_distl_method_2 > 0) &
    (estimated_d_min > 0) &
    (n_indexed == 0)).count(True)

  n_rows = 10
  n_rows = min(n_rows, len(n_spots_total))
  perm_n_spots_total = flex.sort_permutation(n_spots_total, reverse=True)
  print 'Top %i images sorted by number of spots:' %n_rows
  print_table(stats, perm=perm_n_spots_total, n_rows=n_rows)

  n_bins = 20
  spot_count_histogram(
    n_spots_total, n_bins=n_bins, filename='hist_n_spots_total.png', log=True)
  spot_count_histogram(
    n_spots_no_ice, n_bins=n_bins, filename='hist_n_spots_no_ice.png', log=True)
  spot_count_histogram(
    n_indexed.select(n_indexed > 0), n_bins=n_bins, filename='hist_n_indexed.png', log=False)

  if len(crystals):
    plot_unit_cell_histograms(crystals)

  if params.stereographic_projections and len(crystals):
    from dxtbx.datablock import DataBlockFactory
    datablocks = DataBlockFactory.from_filenames(
      [image_names[0]], verbose=False)
    assert len(datablocks) == 1
    imageset = datablocks[0].extract_imagesets()[0]
    s0 = imageset.get_beam().get_s0()
    # XXX what if no goniometer?
    rotation_axis = imageset.get_goniometer().get_rotation_axis()

    indices = ((1,0,0), (0,1,0), (0,0,1))
    for i, index in enumerate(indices):

      from cctbx import crystal, miller
      from scitbx import matrix
      miller_indices = flex.miller_index([index])
      symmetry = crystal.symmetry(
        unit_cell=crystals[0].get_unit_cell(),
        space_group=crystals[0].get_space_group())
      miller_set = miller.set(symmetry, miller_indices)
      d_spacings = miller_set.d_spacings()
      d_spacings = d_spacings.as_non_anomalous_array().expand_to_p1()
      d_spacings = d_spacings.generate_bijvoet_mates()
      miller_indices = d_spacings.indices()

      # plane normal
      d0 = matrix.col(s0).normalize()
      d1 = d0.cross(matrix.col(rotation_axis)).normalize()
      d2 = d1.cross(d0).normalize()
      reference_poles = (d0, d1, d2)

      from dials.command_line.stereographic_projection import stereographic_projection
      projections = []

      for cryst in crystals:
        reciprocal_space_points = list(cryst.get_U() * cryst.get_B()) * miller_indices.as_vec3_double()
        projections.append(stereographic_projection(
          reciprocal_space_points, reference_poles))

        #from dials.algorithms.indexing.compare_orientation_matrices import \
        #  difference_rotation_matrix_and_euler_angles
        #R_ij, euler_angles, cb_op = difference_rotation_matrix_and_euler_angles(
        #  crystals[0], cryst)
        #print max(euler_angles)

      from dials.command_line.stereographic_projection import plot_projections
      plot_projections(projections, filename='projections_%s.png' %('hkl'[i]))
      pyplot.clf()

  def plot_grid(values, grid, file_name, cmap=pyplot.cm.Reds,
                vmin=None, vmax=None, invalid='white'):
    values = values.as_double()
    # At DLS, fast direction appears to be largest direction
    if grid[0] > grid[1]:
      values.reshape(flex.grid(reversed(grid)))
      values = values.matrix_transpose()
    else:
      values.reshape(flex.grid(grid))

    Z = values.as_numpy_array()

    #f, (ax1, ax2) = pyplot.subplots(2)
    f, ax1 = pyplot.subplots(1)

    mesh1 = ax1.pcolormesh(
      values.as_numpy_array(), cmap=cmap, vmin=vmin, vmax=vmax)
    mesh1.cmap.set_under(color=invalid, alpha=None)
    mesh1.cmap.set_over(color=invalid, alpha=None)
    #mesh2 = ax2.contour(Z, cmap=cmap, vmin=vmin, vmax=vmax)
    #mesh2 = ax2.contourf(Z, cmap=cmap, vmin=vmin, vmax=vmax)
    ax1.set_aspect('equal')
    ax1.invert_yaxis()
    #ax2.set_aspect('equal')
    #ax2.invert_yaxis()
    pyplot.colorbar(mesh1, ax=ax1)
    #pyplot.colorbar(mesh2, ax=ax2)
    pyplot.savefig(file_name, dpi=600)
    pyplot.clf()

  def plot_positions(values, positions, file_name, cmap=pyplot.cm.Reds,
                     vmin=None, vmax=None, invalid='white'):
    values = values.as_double()
    assert positions.size() >= values.size()
    positions = positions[:values.size()]

    if vmin is None:
      vmin = flex.min(values)
    if vmax is None:
      vmax = flex.max(values)

    x, y = positions.parts()
    dx = flex.abs(x[1:] - x[:-1])
    dy = flex.abs(y[1:] - y[:-1])
    dx = dx.select(dx > 0)
    dy = dy.select(dy > 0)

    scale = 1/flex.min(dx)
    #print scale
    x = (x * scale).iround()
    y = (y * scale).iround()

    from libtbx.math_utils import iceil
    z = flex.double(flex.grid(iceil(flex.max(y))+1, iceil(flex.max(x))+1), -2)
    #print z.all()
    for x_, y_, z_ in zip(x, y, values):
      z[y_, x_] = z_

    plot_grid(z.as_1d(), z.all(), file_name, cmap=cmap, vmin=vmin, vmax=vmax,
              invalid=invalid)
    return

  if grid is not None or positions is not None:
    if grid is not None:
      positions = tuple(reversed(grid))
      plotter = plot_grid
    else:
      plotter = plot_positions

    cmap = pyplot.get_cmap(params.cmap)
    plotter(n_spots_total, positions, 'grid_spot_count_total.png', cmap=cmap,
            invalid=params.invalid)
    plotter(n_spots_no_ice, positions, 'grid_spot_count_no_ice.png', cmap=cmap,
            invalid=params.invalid)
    plotter(total_intensity, positions, 'grid_total_intensity.png', cmap=cmap,
            invalid=params.invalid)
    if flex.max(n_indexed) > 0:
      plotter(n_indexed, positions, 'grid_n_indexed.png', cmap=cmap,
              invalid=params.invalid)
      plotter(fraction_indexed, positions, 'grid_fraction_indexed.png',
              cmap=cmap, vmin=0, vmax=1, invalid=params.invalid)

    for i, d_min in enumerate((estimated_d_min, d_min_distl_method_1, d_min_distl_method_2)):
      from cctbx import uctbx
      d_star_sq = uctbx.d_as_d_star_sq(d_min)
      d_star_sq.set_selected(d_star_sq == 1, 0)
      vmin = flex.min(d_star_sq.select(d_star_sq > 0))
      vmax = flex.max(d_star_sq)

      vmin = flex.min(d_min.select(d_min > 0))
      vmax = flex.max(d_min)
      cmap = pyplot.get_cmap('%s_r' %params.cmap)
      d_min.set_selected(d_min <= 0, vmax)

      if i == 0:
        plotter(d_min, positions, 'grid_d_min.png', cmap=cmap, vmin=vmin,
                vmax=vmax, invalid=params.invalid)
      else:
        plotter(
          d_min, positions, 'grid_d_min_method_%i.png' %i, cmap=cmap,
          vmin=vmin, vmax=vmax, invalid=params.invalid)

  if flex.max(n_indexed) > 0:
    pyplot.hexbin(
      n_spots, n_indexed, bins='log', cmap=pyplot.cm.jet, gridsize=50)
    pyplot.colorbar()
    #pyplot.scatter(n_spots, n_indexed, marker=marker, alpha=alpha, c=blue, lw=lw)
    xlim = pyplot.xlim()
    ylim = pyplot.ylim()
    pyplot.plot([0, max(n_spots)], [0, max(n_spots)], c=red)
    pyplot.xlim(0, xlim[1])
    pyplot.ylim(0, ylim[1])
    pyplot.xlabel('# spots')
    pyplot.ylabel('# indexed')
    pyplot.savefig('n_spots_vs_n_indexed.png')
    pyplot.clf()

    pyplot.hexbin(
      n_spots, fraction_indexed, bins='log', cmap=pyplot.cm.jet, gridsize=50)
    pyplot.colorbar()
    #pyplot.scatter(
      #n_spots, fraction_indexed, marker=marker, alpha=alpha, c=blue, lw=lw)
    pyplot.xlim(0, pyplot.xlim()[1])
    pyplot.ylim(0, pyplot.ylim()[1])
    pyplot.xlabel('# spots')
    pyplot.ylabel('Fraction indexed')
    pyplot.savefig('n_spots_vs_fraction_indexed.png')
    pyplot.clf()

    pyplot.hexbin(
      n_indexed, fraction_indexed, bins='log', cmap=pyplot.cm.jet, gridsize=50)
    pyplot.colorbar()
    #pyplot.scatter(
      #n_indexed, fraction_indexed, marker=marker, alpha=alpha, c=blue, lw=lw)
    pyplot.xlim(0, pyplot.xlim()[1])
    pyplot.ylim(0, pyplot.ylim()[1])
    pyplot.xlabel('# indexed')
    pyplot.ylabel('Fraction indexed')
    pyplot.savefig('n_indexed_vs_fraction_indexed.png')
    pyplot.clf()

    pyplot.hexbin(
      n_spots, n_lattices, bins='log', cmap=pyplot.cm.jet, gridsize=50)
    pyplot.colorbar()
    #pyplot.scatter(
      #n_spots, n_lattices, marker=marker, alpha=alpha, c=blue, lw=lw)
    pyplot.xlim(0, pyplot.xlim()[1])
    pyplot.ylim(0, pyplot.ylim()[1])
    pyplot.xlabel('# spots')
    pyplot.ylabel('# lattices')
    pyplot.savefig('n_spots_vs_n_lattices.png')
    pyplot.clf()

  #pyplot.scatter(
  #  estimated_d_min, d_min_distl_method_1, marker=marker, alpha=alpha, c=blue, lw=lw)
  pyplot.hexbin(estimated_d_min, d_min_distl_method_1, bins='log',
                cmap=pyplot.cm.jet, gridsize=50)
  pyplot.colorbar()
  #pyplot.gca().set_aspect('equal')
  xlim = pyplot.xlim()
  ylim = pyplot.ylim()
  m = max(max(estimated_d_min), max(d_min_distl_method_1))
  pyplot.plot([0, m], [0, m], c=red)
  pyplot.xlim(0, xlim[1])
  pyplot.ylim(0, ylim[1])
  pyplot.xlabel('estimated_d_min')
  pyplot.ylabel('d_min_distl_method_1')
  pyplot.savefig('d_min_vs_distl_method_1.png')
  pyplot.clf()

  #pyplot.scatter(
  #  estimated_d_min, d_min_distl_method_2, marker=marker, alpha=alpha, c=blue, lw=lw)
  pyplot.hexbin(estimated_d_min, d_min_distl_method_2, bins='log',
                cmap=pyplot.cm.jet, gridsize=50)
  pyplot.colorbar()
  #pyplot.gca().set_aspect('equal')
  xlim = pyplot.xlim()
  ylim = pyplot.ylim()
  m = max(max(estimated_d_min), max(d_min_distl_method_2))
  pyplot.plot([0, m], [0, m], c=red)
  pyplot.xlim(0, xlim[1])
  pyplot.ylim(0, ylim[1])
  pyplot.xlabel('estimated_d_min')
  pyplot.ylabel('d_min_distl_method_2')
  pyplot.savefig('d_min_vs_distl_method_2.png')
  pyplot.clf()

  #pyplot.scatter(
  #  d_min_distl_method_1, d_min_distl_method_2, marker=marker, alpha=alpha, c=blue, lw=lw)
  pyplot.hexbin(d_min_distl_method_1, d_min_distl_method_2, bins='log',
                cmap=pyplot.cm.jet, gridsize=50)
  pyplot.colorbar()
  #pyplot.gca().set_aspect('equal')
  xlim = pyplot.xlim()
  ylim = pyplot.ylim()
  m = max(max(d_min_distl_method_1), max(d_min_distl_method_2))
  pyplot.plot([0, m], [0, m], c=red)
  pyplot.xlim(0, xlim[1])
  pyplot.ylim(0, ylim[1])
  pyplot.xlabel('d_min_distl_method_1')
  pyplot.ylabel('d_min_distl_method_2')
  pyplot.savefig('distl_method_1_vs_distl_method_2.png')
  pyplot.clf()

  pyplot.hexbin(
    n_spots, estimated_d_min, bins='log', cmap=pyplot.cm.jet, gridsize=50)
  pyplot.colorbar()
  #pyplot.scatter(
    #n_spots, estimated_d_min, marker=marker, alpha=alpha, c=blue, lw=lw)
  pyplot.xlim(0, pyplot.xlim()[1])
  pyplot.ylim(0, pyplot.ylim()[1])
  pyplot.xlabel('# spots')
  pyplot.ylabel('estimated_d_min')
  pyplot.savefig('n_spots_vs_d_min.png')
  pyplot.clf()

  pyplot.hexbin(
    n_spots, d_min_distl_method_1, bins='log', cmap=pyplot.cm.jet, gridsize=50)
  pyplot.colorbar()
  #pyplot.scatter(
    #n_spots, d_min_distl_method_1, marker=marker, alpha=alpha, c=blue, lw=lw)
  pyplot.xlim(0, pyplot.xlim()[1])
  pyplot.ylim(0, pyplot.ylim()[1])
  pyplot.xlabel('# spots')
  pyplot.ylabel('d_min_distl_method_1')
  pyplot.savefig('n_spots_vs_distl_method_1.png')
  pyplot.clf()

  pyplot.hexbin(
    n_spots, d_min_distl_method_2, bins='log', cmap=pyplot.cm.jet, gridsize=50)
  pyplot.colorbar()
  #pyplot.scatter(
    #n_spots, d_min_distl_method_2, marker=marker, alpha=alpha, c=blue, lw=lw)
  pyplot.xlim(0, pyplot.xlim()[1])
  pyplot.ylim(0, pyplot.ylim()[1])
  pyplot.xlabel('# spots')
  pyplot.ylabel('d_min_distl_method_2')
  pyplot.savefig('n_spots_vs_distl_method_2.png')
  pyplot.clf()
Ejemplo n.º 46
0
def index_from_files(f_one,f_two,f_three):

    import dxtbx
    from iotbx.phil import parse
    from dxtbx.datablock import DataBlockFactory
    from dials.array_family import flex
    from dials.algorithms.indexing.indexer import indexer_base
    from dials.util.options import OptionParser
    import copy

    phil_scope_str='''
        output {{
          shoeboxes = True
        .type = bool
        .help = Save the raw pixel values inside the reflection shoeboxes.
        }}
        include scope dials.algorithms.spot_finding.factory.phil_scope
        include scope dials.algorithms.indexing.indexer.index_only_phil_scope
        include scope dials.algorithms.refinement.refiner.phil_scope
        indexing.known_symmetry.unit_cell={0}
          .type = unit_cell
        indexing.known_symmetry.space_group={1}
          .type = space_group
          '''
    phil_scope = parse(phil_scope_str.format(target_cell,target_sg), process_includes=True)
    #  from dials.util.options import OptionParser
    parser = OptionParser(phil=phil_scope)
    params, options = parser.parse_args(args=[], show_diff_phil=True)

    params.refinement.parameterisation.scan_varying = False
    params.indexing.method='real_space_grid_search'
    # params.indexing.method='fft3d'
    #  params.indexing.max_cell=800
    #  params.spotfinder.filter.min_spot_size=3
      
    filenames = [f_one,f_two,f_three]

    datablock = DataBlockFactory.from_filenames(filenames)[0]

    observed = flex.reflection_table.from_observations(datablock, params)
    observed.as_pickle("strong.pickle")
    print "Number of observed reflections:", len(observed)

    working_params = copy.deepcopy(params)
    imagesets = datablock.extract_imagesets()

    print "indexing..."
    t0 = time()
    # new dials, fix by Aaron
    idxr = indexer_base.from_parameters(observed, imagesets, params=params)
    idxr.index()
    tel = time()-t0
    print "done indexing (",tel," sec)"

    # new dials
    indexed = idxr.refined_reflections
    experiments = idxr.refined_experiments
    print experiments.crystals()[0]
    crystal_params = experiments.crystals()[0]
    with open('crystal.pkl', 'wb') as output:
        pickle.dump(crystal_params, output, pickle.HIGHEST_PROTOCOL)

    return
Ejemplo n.º 47
0
def work(filename, cl=None):
  if cl is None:
    cl = []
  import libtbx.phil
  phil_scope = libtbx.phil.parse('''\
index = False
  .type = bool
integrate = False
  .type = bool
indexing_min_spots = 10
  .type = int(value_min=1)
''')
  if not os.access(filename, os.R_OK):
    raise RuntimeError("Server does not have read access to file %s" %filename)
  interp = phil_scope.command_line_argument_interpreter()
  params, unhandled = interp.process_and_fetch(
    cl, custom_processor='collect_remaining')
  index = params.extract().index
  integrate = params.extract().integrate
  indexing_min_spots = params.extract().indexing_min_spots

  from dials.command_line.find_spots import phil_scope as find_spots_phil_scope
  from dxtbx.datablock import DataBlockFactory
  from dials.array_family import flex
  interp = find_spots_phil_scope.command_line_argument_interpreter()
  phil_scope, unhandled = interp.process_and_fetch(
    unhandled, custom_processor='collect_remaining')
  logger.info('The following spotfinding parameters have been modified:')
  logger.info(find_spots_phil_scope.fetch_diff(source=phil_scope).as_str())
  params = phil_scope.extract()
  # no need to write the hot mask in the server/client
  params.spotfinder.write_hot_mask = False
  datablock = DataBlockFactory.from_filenames([filename])[0]
  t0 = time.time()
  reflections = flex.reflection_table.from_observations(datablock, params)
  t1 = time.time()
  logger.info('Spotfinding took %.2f seconds' %(t1-t0))
  from dials.algorithms.spot_finding import per_image_analysis
  imageset = datablock.extract_imagesets()[0]
  scan = imageset.get_scan()
  if scan is not None:
    i = scan.get_array_range()[0]
  else:
    i = 0
  stats = per_image_analysis.stats_single_image(
    imageset, reflections, i=i, plot=False)
  stats = stats.__dict__
  t2 = time.time()
  logger.info('Resolution analysis took %.2f seconds' %(t2-t1))

  if index and stats['n_spots_no_ice'] > indexing_min_spots:
    import logging
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)
    from dials.algorithms.indexing import indexer
    from dxtbx.serialize.crystal import to_dict
    interp = indexer.master_phil_scope.command_line_argument_interpreter()
    phil_scope, unhandled = interp.process_and_fetch(
      unhandled, custom_processor='collect_remaining')
    imagesets = [imageset]
    logger.info('The following indexing parameters have been modified:')
    indexer.master_phil_scope.fetch_diff(source=phil_scope).show()
    params = phil_scope.extract()
    params.indexing.scan_range=[]

    if (imageset.get_goniometer() is not None and
        imageset.get_scan() is not None and
        imageset.get_scan().get_oscillation()[1] == 0):
      imageset.set_goniometer(None)
      imageset.set_scan(None)

    try:
      idxr = indexer.indexer_base.from_parameters(
        reflections, imagesets, params=params)
      indexing_results = []
      indexed_sel = idxr.refined_reflections.get_flags(
        idxr.refined_reflections.flags.indexed)
      indexed_sel &= ~(idxr.refined_reflections.get_flags(
        idxr.refined_reflections.flags.centroid_outlier))
      for i_expt, expt in enumerate(idxr.refined_experiments):
        sel = idxr.refined_reflections['id'] == i_expt
        sel &= indexed_sel
        indexing_results.append({
          'crystal': to_dict(expt.crystal),
          'n_indexed': sel.count(True),
          'fraction_indexed': sel.count(True)/sel.size()})
      stats['lattices'] = indexing_results
      stats['n_indexed'] = indexed_sel.count(True)
      stats['fraction_indexed'] = indexed_sel.count(True)/len(reflections)
    except Exception, e:
      logger.error(e)
      stats['error'] = str(e)
      #stats.crystal = None
      #stats.n_indexed = None
      #stats.fraction_indexed = None
    finally:
Ejemplo n.º 48
0
def load_imagesets(template, directory, id_image=None, image_range=None,
                   use_cache=True, reversephi=False):
  global imageset_cache
  from dxtbx.datablock import DataBlockFactory
  from xia2.Applications.xia2setup import known_hdf5_extensions

  full_template_path = os.path.join(directory, template)
  if full_template_path not in imageset_cache or not use_cache:

    from dxtbx.datablock import BeamComparison
    from dxtbx.datablock import DetectorComparison
    from dxtbx.datablock import GoniometerComparison

    params = PhilIndex.params.xia2.settings
    compare_beam = BeamComparison(
      wavelength_tolerance=params.input.tolerance.beam.wavelength,
      direction_tolerance=params.input.tolerance.beam.direction,
      polarization_normal_tolerance=params.input.tolerance.beam.polarization_normal,
      polarization_fraction_tolerance=params.input.tolerance.beam.polarization_fraction)
    compare_detector = DetectorComparison(
      fast_axis_tolerance=params.input.tolerance.detector.fast_axis,
      slow_axis_tolerance=params.input.tolerance.detector.slow_axis,
      origin_tolerance=params.input.tolerance.detector.origin)
    compare_goniometer = GoniometerComparison(
      rotation_axis_tolerance=params.input.tolerance.goniometer.rotation_axis,
      fixed_rotation_tolerance=params.input.tolerance.goniometer.fixed_rotation,
      setting_rotation_tolerance=params.input.tolerance.goniometer.setting_rotation)
    scan_tolerance = params.input.tolerance.scan.oscillation

    format_kwargs = {
      'dynamic_shadowing' : params.input.format.dynamic_shadowing,
      'multi_panel' : params.input.format.multi_panel,
    }

    if os.path.splitext(full_template_path)[-1] in known_hdf5_extensions:
      import glob
      g = glob.glob(os.path.join(directory, '*_master.h5'))
      master_file = None
      for p in g:
        substr = longest_common_substring(template, p)
        if substr:
          if (master_file is None or
              (len(substr) > len(longest_common_substring(template, master_file)))):
            master_file = p

      if master_file is None:
        raise RuntimeError("Can't find master file for %s" %full_template_path)

      unhandled = []
      datablocks = DataBlockFactory.from_filenames(
        [master_file], verbose=False, unhandled=unhandled,
        compare_beam=compare_beam,
        compare_detector=compare_detector,
        compare_goniometer=compare_goniometer,
        scan_tolerance=scan_tolerance,
        format_kwargs=format_kwargs)
      assert len(unhandled) == 0, "unhandled image files identified: %s" % \
          unhandled
      assert len(datablocks) == 1, "1 datablock expected, %d found" % \
          len(datablocks)

    else:

      from dxtbx.sweep_filenames import locate_files_matching_template_string

      params = PhilIndex.get_python_object()
      read_all_image_headers = params.xia2.settings.read_all_image_headers

      if read_all_image_headers:
        paths = sorted(locate_files_matching_template_string(full_template_path))
        unhandled = []
        datablocks = DataBlockFactory.from_filenames(
          paths, verbose=False, unhandled=unhandled,
          compare_beam=compare_beam,
          compare_detector=compare_detector,
          compare_goniometer=compare_goniometer,
          scan_tolerance=scan_tolerance,
          format_kwargs=format_kwargs)
        assert len(unhandled) == 0, "unhandled image files identified: %s" % \
            unhandled
        assert len(datablocks) == 1, "1 datablock expected, %d found" % \
            len(datablocks)

      else:
        from dxtbx.datablock import DataBlockTemplateImporter
        importer = DataBlockTemplateImporter(
          [full_template_path], kwargs=format_kwargs)
        datablocks = importer.datablocks

    imagesets = datablocks[0].extract_sweeps()
    assert len(imagesets) > 0, "no imageset found"

    imageset_cache[full_template_path] = OrderedDict()
    if reversephi:
      for imageset in imagesets:
        goniometer = imageset.get_goniometer()
        goniometer.set_rotation_axis(
          tuple((-g for g in goniometer.get_rotation_axis())))

    reference_geometry = PhilIndex.params.xia2.settings.input.reference_geometry
    if reference_geometry is not None and len(reference_geometry) > 0:
      update_with_reference_geometry(imagesets, reference_geometry)

    from dials.command_line.dials_import import ManualGeometryUpdater
    update_geometry = ManualGeometryUpdater(
      PhilIndex.params.xia2.settings.input)
    imagesets = [update_geometry(imageset) for imageset in imagesets]

    from scitbx.array_family import flex
    for imageset in imagesets:
      scan = imageset.get_scan()
      exposure_times = scan.get_exposure_times()
      epochs = scan.get_epochs()
      if exposure_times.all_eq(0):
        exposure_times = flex.double(exposure_times.size(), 1)
        scan.set_exposure_times(exposure_times)
      elif not exposure_times.all_gt(0):
        exposure_times = flex.double(exposure_times.size(), exposure_times[0])
        scan.set_exposure_times(exposure_times)
      if epochs.size() > 1 and not epochs.all_gt(0):
        for i in range(1, epochs.size()):
          epochs[i] = epochs[i-1] + exposure_times[i-1]
        scan.set_epochs(epochs)
      _id_image = scan.get_image_range()[0]
      imageset_cache[full_template_path][_id_image] = imageset

  if id_image is not None:
    return [imageset_cache[full_template_path][id_image]]
  elif image_range is not None:
    for imageset in imageset_cache[full_template_path].values():
      scan = imageset.get_scan()
      scan_image_range = scan.get_image_range()
      if (image_range[0] >= scan_image_range[0] and
          image_range[1] <= scan_image_range[1]):
        imagesets = [imageset[
          image_range[0] - scan_image_range[0]:
          image_range[1] + 1 - scan_image_range[0]]]
        assert len(imagesets[0]) == image_range[1] - image_range[0] + 1, \
          len(imagesets[0])
        return imagesets
  return imageset_cache[full_template_path].values()
Ejemplo n.º 49
0
def load_imagesets(template, directory, id_image=None, image_range=None,
                   use_cache=True, reversephi=False):
  global imageset_cache

  full_template_path = os.path.join(directory, template)
  if full_template_path not in imageset_cache or not use_cache:

    from dxtbx.datablock import DataBlockFactory
    from dxtbx.sweep_filenames import locate_files_matching_template_string

    params = PhilIndex.get_python_object()
    read_all_image_headers = params.xia2.settings.read_all_image_headers

    if read_all_image_headers:
      paths = sorted(locate_files_matching_template_string(full_template_path))
      unhandled = []
      datablocks = DataBlockFactory.from_filenames(
        paths, verbose=False, unhandled=unhandled)
      assert len(unhandled) == 0, "unhandled image files identified: %s" % \
          unhandled
      assert len(datablocks) == 1, "1 datablock expected, %d found" % \
          len(datablocks)

    else:
      from dxtbx.datablock import DataBlockTemplateImporter
      importer = DataBlockTemplateImporter([full_template_path])
      datablocks = importer.datablocks

    imagesets = datablocks[0].extract_sweeps()
    assert len(imagesets) > 0, "no imageset found"

    imageset_cache[full_template_path] = OrderedDict()
    if reversephi:
      for imageset in imagesets:
        goniometer = imageset.get_goniometer()
        goniometer.set_rotation_axis(
          tuple((-g for g in goniometer.get_rotation_axis())))

    reference_geometry = PhilIndex.params.xia2.settings.input.reference_geometry
    if reference_geometry is not None and len(reference_geometry) > 0:
      update_with_reference_geometry(imagesets, reference_geometry)

    for imageset in imagesets:
      scan = imageset.get_scan()
      _id_image = scan.get_image_range()[0]
      imageset_cache[full_template_path][_id_image] = imageset

  if id_image is not None:
    return [imageset_cache[full_template_path][id_image]]
  elif image_range is not None:
    for imageset in imageset_cache[full_template_path].values():
      scan = imageset.get_scan()
      scan_image_range = scan.get_image_range()
      if (image_range[0] >= scan_image_range[0] and
          image_range[1] <= scan_image_range[1]):
        imagesets = [imageset[
          image_range[0] - scan_image_range[0]:
          image_range[1] + 1 - scan_image_range[0]]]
        assert len(imagesets[0]) == image_range[1] - image_range[0] + 1, \
          len(imagesets[0])
        return imagesets
  return imageset_cache[full_template_path].values()
Ejemplo n.º 50
0
  def run(self):
    '''Execute the script.'''
    from dials.util import log
    from logging import info
    from time import time
    from libtbx.utils import Abort
    from libtbx import easy_mp
    import os, copy
    from dxtbx.datablock import DataBlockFactory

    # Parse the command line
    params, options, all_paths = self.parser.parse_args(show_diff_phil=False, return_unhandled=True)

    # Check we have some filenames
    if len(all_paths) == 0:
      self.parser.print_help()
      return

    # Save the options
    self.options = options
    self.params = params

    st = time()

    # Configure logging
    log.config(
      params.verbosity,
      info='dials.process.log',
      debug='dials.process.debug.log')

    # Log the diff phil
    diff_phil = self.parser.diff_phil.as_str()
    if diff_phil is not '':
      info('The following parameters have been modified:\n')
      info(diff_phil)

    # Import stuff
    info("Loading files...")
    if len(all_paths) == 1:
      datablocks = DataBlockFactory.from_filenames(all_paths)
    else:
      def do_import(filename):
        info("Loading %s"%os.path.basename(filename))
        datablocks = DataBlockFactory.from_filenames([filename])
        if len(datablocks) == 0:
          raise Abort("Could not load %s"%filename)
        if len(datablocks) > 1:
          raise Abort("Got multiple datablocks from file %s"%filename)
        return datablocks[0]

      datablocks = easy_mp.parallel_map(
        func=do_import,
        iterable=all_paths,
        processes=params.mp.nproc,
        method=params.mp.method,
        preserve_order=True,
        preserve_exception_message=True)

    if len(datablocks) == 0:
      raise Abort('No datablocks specified')

    # Handle still imagesets by breaking them apart into multiple datablocks
    # Further handle single file still imagesets (like HDF5) by tagging each
    # frame using its index
    indices = []
    basenames = []
    split_datablocks = []
    for datablock in datablocks:
      for imageset in datablock.extract_imagesets():
        for i in xrange(len(imageset)):
          subset = imageset[i:i+1]
          split_datablocks.append(DataBlockFactory.from_imageset(subset)[0])
          indices.append(i)
          basenames.append(os.path.splitext(os.path.basename(subset.paths()[0]))[0])
    tags = []
    for i, basename in zip(indices, basenames):
      if basenames.count(basename) > 1:
        tags.append("%s_%d"%(basename, i))
      else:
        tags.append(basename)

    # Wrapper function
    def do_work(item):
      Processor(copy.deepcopy(params)).process_datablock(item[0], item[1])

    # Process the data
    easy_mp.parallel_map(
      func=do_work,
      iterable=zip(tags, split_datablocks),
      processes=params.mp.nproc,
      method=params.mp.method,
      preserve_order=True,
      preserve_exception_message=True)

     # Total Time
    info("")
    info("Total Time Taken = %f seconds" % (time() - st))