Ejemplo n.º 1
0
        def get_values(invert_y):

            from dxtbx.model.beam import beam_factory
            beam = beam_factory.simple(wavelength=1)

            if invert_y:
                y_direction = "-y"
            else:
                y_direction = "+y"

            from dxtbx.model.detector import detector_factory
            detector = detector_factory.simple(
                sensor=detector_factory.sensor("PAD"),
                distance=100,
                beam_centre=[50, 50],
                fast_direction="+x",
                slow_direction=y_direction,
                pixel_size=[0.1, 0.1],
                image_size=[1000, 1000])

            from dxtbx.model import ParallaxCorrectedPxMmStrategy
            from cctbx.eltbx import attenuation_coefficient
            wavelength = beam.get_wavelength()
            thickness = 0.5
            table = attenuation_coefficient.get_table("Si")
            mu = table.mu_at_angstrom(wavelength) / 10.0
            t0 = thickness

            for panel in detector:
                panel.set_px_mm_strategy(ParallaxCorrectedPxMmStrategy(mu, t0))
            v1 = detector[0].pixel_to_millimeter((0, 0))
            v2 = detector[0].pixel_to_millimeter((1000, 1000))

            return v1, v2
Ejemplo n.º 2
0
  def __init__(self,params):
    import cPickle as pickle
    from dxtbx.model.beam import beam_factory
    from dxtbx.model.detector import detector_factory
    from dxtbx.model.crystal import crystal_model
    from cctbx.crystal_orientation import crystal_orientation,basis_type
    from dxtbx.model.experiment.experiment_list import Experiment, ExperimentList
    from scitbx import matrix
    self.experiments = ExperimentList()
    self.unique_file_names = []

    self.params = params
    data = pickle.load(open(self.params.output.prefix+"_frame.pickle","rb"))
    frames_text = data.split("\n")

    for item in frames_text:
      tokens = item.split(' ')
      wavelength = float(tokens[order_dict["wavelength"]])

      beam = beam_factory.simple(wavelength = wavelength)

      detector = detector_factory.simple(
        sensor = detector_factory.sensor("PAD"), # XXX shouldn't hard code for XFEL
        distance = float(tokens[order_dict["distance"]]),
        beam_centre = [float(tokens[order_dict["beam_x"]]), float(tokens[order_dict["beam_y"]])],
        fast_direction = "+x",
        slow_direction = "+y",
        pixel_size = [self.params.pixel_size,self.params.pixel_size],
        image_size = [1795,1795],  # XXX obviously need to figure this out
        )

      reciprocal_matrix = matrix.sqr([float(tokens[order_dict[k]]) for k in [
'res_ori_1','res_ori_2','res_ori_3','res_ori_4','res_ori_5','res_ori_6','res_ori_7','res_ori_8','res_ori_9']])
      ORI = crystal_orientation(reciprocal_matrix, basis_type.reciprocal)
      direct = matrix.sqr(ORI.direct_matrix())
      crystal = crystal_model(
        real_space_a = matrix.row(direct[0:3]),
        real_space_b = matrix.row(direct[3:6]),
        real_space_c = matrix.row(direct[6:9]),
        space_group_symbol = "P63",  # XXX obviously another gap in the database paradigm
        mosaicity = float(tokens[order_dict["half_mosaicity_deg"]]),
      )
      crystal.domain_size = float(tokens[order_dict["domain_size_ang"]])
      #if isoform is not None:
      #  newB = matrix.sqr(isoform.fractionalization_matrix()).transpose()
      #  crystal.set_B(newB)

      self.experiments.append(Experiment(beam=beam,
                                  detector=None, #dummy for now
                                  crystal=crystal))
      self.unique_file_names.append(tokens[order_dict["unique_file_name"]])

    self.show_summary()
Ejemplo n.º 3
0
    def __init__(self, filename, experiment, HKL, i_sigi, measurements,
                 params):
        from libtbx import adopt_init_args
        adopt_init_args(self, locals())
        self.stash_type = None
        self.stash_res_filter = None

        from dxtbx.model.detector import detector_factory
        self.dummy_detector = detector_factory.simple(
            sensor=detector_factory.sensor("PAD"),
            distance=100,
            beam_centre=[1000, 1000],
            fast_direction="+x",
            slow_direction="+y",
            pixel_size=[0.2, 0.2],
            image_size=[2000, 2000],
        )
  def prepare_dxtbx_models(self,setting_specific_ai,sg,isoform=None):

    from dxtbx.model.beam import beam_factory
    beam = beam_factory.simple(wavelength = self.inputai.wavelength)

    from dxtbx.model.detector import detector_factory
    detector = detector_factory.simple(
      sensor = detector_factory.sensor("PAD"),
      distance = setting_specific_ai.distance(),
      beam_centre = [setting_specific_ai.xbeam(), setting_specific_ai.ybeam()],
      fast_direction = "+x",
      slow_direction = "+y",
      pixel_size = [self.pixel_size,self.pixel_size],
      image_size = [self.inputpd['size1'],self.inputpd['size1']],
      )

    direct = matrix.sqr(setting_specific_ai.getOrientation().direct_matrix())
    from dxtbx.model.crystal import crystal_model
    crystal = crystal_model(
      real_space_a = matrix.row(direct[0:3]),
      real_space_b = matrix.row(direct[3:6]),
      real_space_c = matrix.row(direct[6:9]),
      space_group_symbol = sg,
      mosaicity = setting_specific_ai.getMosaicity()
    )
    if isoform is not None:
      newB = matrix.sqr(isoform.fractionalization_matrix()).transpose()
      crystal.set_B(newB)

    from dxtbx.model.experiment.experiment_list import Experiment, ExperimentList
    experiments = ExperimentList()
    experiments.append(Experiment(beam=beam,
                                  detector=detector,
                                  crystal=crystal))

    print beam
    print detector
    print crystal
    return experiments
Ejemplo n.º 5
0
    def __init__(self, params):
        import cPickle as pickle
        from dxtbx.model.beam import beam_factory
        from dxtbx.model.detector import detector_factory
        from dxtbx.model.crystal import crystal_model
        from cctbx.crystal_orientation import crystal_orientation, basis_type
        from dxtbx.model.experiment.experiment_list import Experiment, ExperimentList
        from scitbx import matrix
        self.experiments = ExperimentList()
        self.unique_file_names = []

        self.params = params
        data = pickle.load(
            open(self.params.output.prefix + "_frame.pickle", "rb"))
        frames_text = data.split("\n")

        for item in frames_text:
            tokens = item.split(' ')
            wavelength = float(tokens[order_dict["wavelength"]])

            beam = beam_factory.simple(wavelength=wavelength)

            detector = detector_factory.simple(
                sensor=detector_factory.sensor(
                    "PAD"),  # XXX shouldn't hard code for XFEL
                distance=float(tokens[order_dict["distance"]]),
                beam_centre=[
                    float(tokens[order_dict["beam_x"]]),
                    float(tokens[order_dict["beam_y"]])
                ],
                fast_direction="+x",
                slow_direction="+y",
                pixel_size=[self.params.pixel_size, self.params.pixel_size],
                image_size=[1795,
                            1795],  # XXX obviously need to figure this out
            )

            reciprocal_matrix = matrix.sqr([
                float(tokens[order_dict[k]]) for k in [
                    'res_ori_1', 'res_ori_2', 'res_ori_3', 'res_ori_4',
                    'res_ori_5', 'res_ori_6', 'res_ori_7', 'res_ori_8',
                    'res_ori_9'
                ]
            ])
            ORI = crystal_orientation(reciprocal_matrix, basis_type.reciprocal)
            direct = matrix.sqr(ORI.direct_matrix())
            crystal = crystal_model(
                real_space_a=matrix.row(direct[0:3]),
                real_space_b=matrix.row(direct[3:6]),
                real_space_c=matrix.row(direct[6:9]),
                space_group_symbol=self.params.target_space_group.type().
                lookup_symbol(),
                mosaicity=float(tokens[order_dict["half_mosaicity_deg"]]),
            )
            crystal.domain_size = float(tokens[order_dict["domain_size_ang"]])
            #if isoform is not None:
            #  newB = matrix.sqr(isoform.fractionalization_matrix()).transpose()
            #  crystal.set_B(newB)

            self.experiments.append(
                Experiment(
                    beam=beam,
                    detector=None,  #dummy for now
                    crystal=crystal))
            self.unique_file_names.append(
                tokens[order_dict["unique_file_name"]])

        self.show_summary()