Ejemplo n.º 1
0
def test_MosaicCrystalKabsch2010():
    mosaic_model = MosaicCrystalKabsch2010(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    mosaic_model2 = MosaicCrystalKabsch2010(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    assert (str(mosaic_model).replace("-0.0000", " 0.0000") == """\
Crystal:
    Unit cell: 10.000, 11.000, 12.000, 90.000, 90.000, 90.000
    Space group: P 1
    U matrix:  {{ 1.0000,  0.0000,  0.0000},
                { 0.0000,  1.0000,  0.0000},
                { 0.0000,  0.0000,  1.0000}}
    B matrix:  {{ 0.1000,  0.0000,  0.0000},
                { 0.0000,  0.0909,  0.0000},
                { 0.0000,  0.0000,  0.0833}}
    A = UB:    {{ 0.1000,  0.0000,  0.0000},
                { 0.0000,  0.0909,  0.0000},
                { 0.0000,  0.0000,  0.0833}}
    Mosaicity:  0.000000""")
    assert approx_equal(mosaic_model.get_mosaicity(), 0)
    assert mosaic_model == mosaic_model2
    mosaic_model2.set_mosaicity(0.01)
    assert mosaic_model != mosaic_model2  # lgtm
def test_similarity():
    model_1 = MosaicCrystalKabsch2010(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    model_1.set_mosaicity(0.5)
    model_2 = MosaicCrystalKabsch2010(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    model_2.set_mosaicity(0.5)
    assert model_1.is_similar_to(model_2)
    model_1.set_mosaicity(-1)
    model_2.set_mosaicity(-0.5)
    assert model_1.is_similar_to(model_2)  # test ignores negative mosaicity
    model_1.set_mosaicity(0.5)
    model_2.set_mosaicity(0.63)  # outside tolerance
    assert not model_1.is_similar_to(model_2)
    model_2.set_mosaicity(0.62)  # just inside tolerance

    # orientation tests
    R = matrix.sqr(model_2.get_U())
    dr1 = matrix.col((1, 0, 0)).axis_and_angle_as_r3_rotation_matrix(0.0101,
                                                                     deg=True)
    dr2 = matrix.col((1, 0, 0)).axis_and_angle_as_r3_rotation_matrix(0.0099,
                                                                     deg=True)
    model_2.set_U(dr1 * R)
    assert not model_1.is_similar_to(model_2)  # outside tolerance
    model_2.set_U(dr2 * R)
    assert model_1.is_similar_to(model_2)  # inside tolerance
def test_MosaicCrystalKabsch2010():
    mosaic_model = MosaicCrystalKabsch2010(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    mosaic_model2 = MosaicCrystalKabsch2010(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    assert approx_equal(mosaic_model.get_mosaicity(), 0)
    assert mosaic_model == mosaic_model2
    mosaic_model2.set_mosaicity(0.01)
    assert mosaic_model != mosaic_model2  # lgtm
    # FIXME Crystal == MosaicCrystal gives unexpected result, depending on
    # parameter order
    # model4 = Crystal(real_space_a=(10,0,0),
    #                  real_space_b=(0,11,0),
    #                  real_space_c=(0,0,12),
    #                  space_group_symbol="P 1")
    # print "model4 == mosaic_model", model4 == mosaic_model # True
    # print "mosaic_model == model4", mosaic_model == model4 # False
    # print "mosaic_model2 == model4", mosaic_model2 == model4 # False
    # print "model4 == mosaic_model2", model4 == mosaic_model2 # True

    mosaic_model = MosaicCrystalSauter2014(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    mosaic_model2 = MosaicCrystalSauter2014(
        real_space_a=(10, 0, 0),
        real_space_b=(0, 11, 0),
        real_space_c=(0, 0, 12),
        space_group_symbol="P 1",
    )
    assert approx_equal(mosaic_model.get_half_mosaicity_deg(), 0)
    assert approx_equal(mosaic_model.get_domain_size_ang(), 0)
    assert mosaic_model == mosaic_model2
    mosaic_model2.set_half_mosaicity_deg(0.01)
    assert mosaic_model != mosaic_model2  # lgtm
    mosaic_model2.set_half_mosaicity_deg(0)
    assert mosaic_model == mosaic_model2  # lgtm
    mosaic_model2.set_domain_size_ang(1000)
    assert mosaic_model != mosaic_model2  # lgtm
Ejemplo n.º 4
0
  def from_dict(d, t=None):
    ''' Convert the dictionary to a crystal model

    Params:
        d The dictionary of parameters
        t The template dictionary to use

    Returns:
        The crystal model

    '''
    # If None, return None
    if d == None:
      if t == None: return None
      else: return from_dict(t, None)
    elif t != None:
      d = dict(t.items() + d.items())

    # Create the model from the dictionary
    if 'ML_half_mosaicity_deg' in d:
      assert 'ML_domain_size_ang' in d
      if d['ML_half_mosaicity_deg'] is None or d['ML_domain_size_ang'] is None:
        assert d['ML_half_mosaicity_deg'] is None and d['ML_domain_size_ang'] is None
      else:
        if 'mosaicity' in d and d['mosaicity'] > 0:
          print "Warning, two kinds of mosaicity found. Using Sauter2014 model"
        from dxtbx.model import MosaicCrystalSauter2014
        return MosaicCrystalSauter2014.from_dict(d)
    if 'mosaicity' in d:
      from dxtbx.model import MosaicCrystalKabsch2010
      return MosaicCrystalKabsch2010.from_dict(d)
    else:
      from dxtbx.model import Crystal
      return Crystal.from_dict(d)
Ejemplo n.º 5
0
 def expt_crystal_maker(self):
   """Construct the crystal object for the experiments file."""
   a, b, c = self.ucell.parameters()[0:3]
   direct_matrix = self.ori.direct_matrix()
   real_a = direct_matrix[0:3]
   real_b = direct_matrix[3:6]
   real_c = direct_matrix[6:9]
   lattice = self.ucell.lattice_symmetry_group()
   found_it = False
   if 'ML_half_mosaicity_deg' in self.data:
     assert 'ML_domain_size_ang' in self.data
     if d['ML_half_mosaicity_deg'][0] is None or d['ML_domain_size_ang'][0] is None:
       assert d['ML_half_mosaicity_deg'][0] is None and d['ML_domain_size_ang'][0] is None
     else:
       found_it = True
       if 'mosaicity' in self.data and self.data['mosaicity'] > 0:
         print "Warning, two kinds of mosaicity found. Using Sauter2014 model"
       from dxtbx.model import MosaicCrystalSauter2014
       self.crystal = MosaicCrystalSauter2014(real_a, real_b, real_c, space_group=lattice)
       self.crystal.set_half_mosaicity_deg(self.data['ML_half_mosaicity_deg'][0])
       self.crystal.set_domain_size_ang(self.data['ML_domain_size_ang'][0])
   if not found_it:
     if 'mosaicity' in self.data:
       from dxtbx.model import MosaicCrystalKabsch2010
       self.crystal = MosaicCrystalKabsch2010(real_a, real_b, real_c, space_group=lattice)
       self.crystal.set_mosaicity(self.data['mosaicity'])
     else:
       from dxtbx.model import Crystal
       self.crystal = Crystal(real_a, real_b, real_c, space_group=lattice)
   if 'identified_isoform' in self.data.keys() and self.data['identified_isoform'] is not None:
     self.crystal.identified_isoform = self.data['identified_isoform']
def test_crystal(mosaic):
  from dxtbx.model import CrystalFactory
  from scitbx import matrix

  real_space_a = matrix.col((35.2402102454, -7.60002142787, 22.080026774))
  real_space_b = matrix.col((22.659572494, 1.47163505925, -35.6586361881))
  real_space_c = matrix.col((5.29417246554, 38.9981792999, 4.97368666613))

  if mosaic:
    from dxtbx.model import MosaicCrystalKabsch2010
    c1 = MosaicCrystalKabsch2010(
        real_space_a=real_space_a,
        real_space_b=real_space_b,
        real_space_c=real_space_c,
        space_group_symbol="P 1 2/m 1")
    c1.set_mosaicity(0.1)
  else:
    from dxtbx.model import Crystal
    c1 = Crystal(
        real_space_a=real_space_a,
        real_space_b=real_space_b,
        real_space_c=real_space_c,
        space_group_symbol="P 1 2/m 1")

  d = c1.to_dict()
  c2 = CrystalFactory.from_dict(d)
  eps = 1e-7
  assert abs(matrix.col(d['real_space_a']) - real_space_a) <= eps
  assert abs(matrix.col(d['real_space_b']) - real_space_b) <= eps
  assert abs(matrix.col(d['real_space_c']) - real_space_c) <= eps
  assert d['space_group_hall_symbol'] == "-P 2y"
  if mosaic:
    assert d['mosaicity'] == 0.1
  assert c1 == c2
Ejemplo n.º 7
0
def test_mosaic_crystal(example_crystal):
    c1 = MosaicCrystalKabsch2010(**example_crystal)
    c1.set_mosaicity(0.1)

    d = c1.to_dict()
    c2 = CrystalFactory.from_dict(d)
    for direction in ("real_space_a", "real_space_b", "real_space_c"):
        assert abs(matrix.col(d[direction]) - example_crystal[direction]) <= 1e-7
    assert d["space_group_hall_symbol"] == "-P 2y"
    assert d["mosaicity"] == 0.1
    assert c1 == c2
Ejemplo n.º 8
0
Archivo: xds.py Proyecto: hbrunie/dxtbx
def to_crystal(filename):
    """Get the crystal model from the xparm file

    Params:
        filename The xparm/or integrate filename

    Return:
        The crystal model

    """
    from rstbx.cftbx.coordinate_frame_converter import coordinate_frame_converter
    from cctbx.sgtbx import space_group, space_group_symbols

    # Get the real space coordinate frame
    cfc = coordinate_frame_converter(filename)
    real_space_a = cfc.get("real_space_a")
    real_space_b = cfc.get("real_space_b")
    real_space_c = cfc.get("real_space_c")
    sg = cfc.get("space_group_number")
    space_group = space_group(space_group_symbols(sg).hall())
    mosaicity = cfc.get("mosaicity")

    # Return the crystal model
    if mosaicity is None:
        from dxtbx.model import Crystal

        crystal = Crystal(
            real_space_a=real_space_a,
            real_space_b=real_space_b,
            real_space_c=real_space_c,
            space_group=space_group,
        )
    else:
        from dxtbx.model import MosaicCrystalKabsch2010

        crystal = MosaicCrystalKabsch2010(
            real_space_a=real_space_a,
            real_space_b=real_space_b,
            real_space_c=real_space_c,
            space_group=space_group,
        )
        crystal.set_mosaicity(mosaicity)
    return crystal
Ejemplo n.º 9
0
    def prepare_dxtbx_models(self, setting_specific_ai, sg, isoform=None):

        from dxtbx.model import BeamFactory
        beam = BeamFactory.simple(wavelength=self.inputai.wavelength)

        from dxtbx.model import DetectorFactory
        detector = DetectorFactory.simple(
            sensor=DetectorFactory.sensor("PAD"),
            distance=setting_specific_ai.distance(),
            beam_centre=[
                setting_specific_ai.xbeam(),
                setting_specific_ai.ybeam()
            ],
            fast_direction="+x",
            slow_direction="+y",
            pixel_size=[self.pixel_size, self.pixel_size],
            image_size=[self.inputpd['size1'], self.inputpd['size1']],
        )

        direct = matrix.sqr(
            setting_specific_ai.getOrientation().direct_matrix())
        from dxtbx.model import MosaicCrystalKabsch2010
        crystal = MosaicCrystalKabsch2010(
            real_space_a=matrix.row(direct[0:3]),
            real_space_b=matrix.row(direct[3:6]),
            real_space_c=matrix.row(direct[6:9]),
            space_group_symbol=sg,
        )
        crystal.set_mosaicity(setting_specific_ai.getMosaicity())
        if isoform is not None:
            newB = matrix.sqr(isoform.fractionalization_matrix()).transpose()
            crystal.set_B(newB)

        from dxtbx.model import Experiment, ExperimentList
        experiments = ExperimentList()
        experiments.append(
            Experiment(beam=beam, detector=detector, crystal=crystal))

        print(beam)
        print(detector)
        print(crystal)
        return experiments
Ejemplo n.º 10
0
    def from_dict(d, t=None):
        """Convert the dictionary to a crystal model

        Params:
            d The dictionary of parameters
            t The template dictionary to use

        Returns:
            The crystal model

        """
        if d is None and t is None:
            return None
        joint = t.copy() if t else {}
        joint.update(d)

        # Create the model from the dictionary
        if "ML_half_mosaicity_deg" in joint:
            assert "ML_domain_size_ang" in joint
            if (joint["ML_half_mosaicity_deg"] is None
                    or joint["ML_domain_size_ang"] is None):
                assert (joint["ML_half_mosaicity_deg"] is None
                        and joint["ML_domain_size_ang"] is None)
            else:
                if joint.get("mosaicity", 0) > 0:
                    print(
                        "Warning, two kinds of mosaicity found. Using Sauter2014 model"
                    )
                from dxtbx.model import MosaicCrystalSauter2014

                return MosaicCrystalSauter2014.from_dict(joint)
        if "mosaicity" in joint:
            from dxtbx.model import MosaicCrystalKabsch2010

            return MosaicCrystalKabsch2010.from_dict(joint)
        else:
            from dxtbx.model import Crystal

            return Crystal.from_dict(joint)
Ejemplo n.º 11
0
def test_crystal_model():
    real_space_a = matrix.col((10, 0, 0))
    real_space_b = matrix.col((0, 11, 0))
    real_space_c = matrix.col((0, 0, 12))
    model = Crystal(real_space_a=(10, 0, 0),
                    real_space_b=(0, 11, 0),
                    real_space_c=(0, 0, 12),
                    space_group_symbol="P 1")
    # This doesn't work as python class uctbx.unit_cell(uctbx_ext.unit_cell)
    # so C++ and python classes are different types
    #assert isinstance(model.get_unit_cell(), uctbx.unit_cell)
    assert model.get_unit_cell().parameters() == (10.0, 11.0, 12.0, 90.0, 90.0,
                                                  90.0)
    assert approx_equal(model.get_A(),
                        (1 / 10, 0, 0, 0, 1 / 11, 0, 0, 0, 1 / 12))
    assert approx_equal(
        matrix.sqr(model.get_A()).inverse(), (10, 0, 0, 0, 11, 0, 0, 0, 12))
    assert approx_equal(model.get_B(), model.get_A())
    assert approx_equal(model.get_U(), (1, 0, 0, 0, 1, 0, 0, 0, 1))
    assert approx_equal(model.get_real_space_vectors(),
                        (real_space_a, real_space_b, real_space_c))
    assert model.get_crystal_symmetry().unit_cell().parameters() == \
      model.get_unit_cell().parameters()
    assert model.get_crystal_symmetry().space_group() == model.get_space_group(
    )

    model2 = Crystal(real_space_a=(10, 0, 0),
                     real_space_b=(0, 11, 0),
                     real_space_c=(0, 0, 12),
                     space_group_symbol="P 1")
    assert model == model2 and not (model != model2)

    model2a = Crystal(model.get_A(), model.get_space_group())
    assert model == model2a and not (model != model2a)

    model2b = Crystal(matrix.sqr(model.get_A()).inverse().elems,
                      model.get_space_group().type().lookup_symbol(),
                      reciprocal=False)
    assert model == model2b and not (model != model2b)

    # rotate 45 degrees about x-axis
    R1 = matrix.sqr(
        (1, 0, 0, 0, math.cos(math.pi / 4), -math.sin(math.pi / 4), 0,
         math.sin(math.pi / 4), math.cos(math.pi / 4)))
    # rotate 30 degrees about y-axis
    R2 = matrix.sqr((math.cos(math.pi / 6), 0, math.sin(math.pi / 6), 0, 1, 0,
                     -math.sin(math.pi / 6), 0, math.cos(math.pi / 6)))
    # rotate 60 degrees about z-axis
    R3 = matrix.sqr((math.cos(math.pi / 3), -math.sin(math.pi / 3), 0,
                     math.sin(math.pi / 3), math.cos(math.pi / 3), 0, 0, 0, 1))
    R = R1 * R2 * R3
    model.set_U(R)
    # B is unchanged
    assert approx_equal(model.get_B(),
                        (1 / 10, 0, 0, 0, 1 / 11, 0, 0, 0, 1 / 12))
    assert approx_equal(model.get_U(), R)
    assert approx_equal(model.get_A(),
                        matrix.sqr(model.get_U()) * matrix.sqr(model.get_B()))
    a_, b_, c_ = model.get_real_space_vectors()
    assert approx_equal(a_, R * real_space_a)
    assert approx_equal(b_, R * real_space_b)
    assert approx_equal(c_, R * real_space_c)
    assert str(model).replace("-0.0000", " 0.0000") == """\
Crystal:
    Unit cell: (10.000, 11.000, 12.000, 90.000, 90.000, 90.000)
    Space group: P 1
    U matrix:  {{ 0.4330, -0.7500,  0.5000},
                { 0.7891,  0.0474, -0.6124},
                { 0.4356,  0.6597,  0.6124}}
    B matrix:  {{ 0.1000,  0.0000,  0.0000},
                { 0.0000,  0.0909,  0.0000},
                { 0.0000,  0.0000,  0.0833}}
    A = UB:    {{ 0.0433, -0.0682,  0.0417},
                { 0.0789,  0.0043, -0.0510},
                { 0.0436,  0.0600,  0.0510}}
"""
    model.set_B((1 / 12, 0, 0, 0, 1 / 12, 0, 0, 0, 1 / 12))
    assert approx_equal(model.get_unit_cell().parameters(),
                        (12, 12, 12, 90, 90, 90))

    U = matrix.sqr((0.3455, -0.2589, -0.9020, 0.8914, 0.3909, 0.2293, 0.2933,
                    -0.8833, 0.3658))
    B = matrix.sqr((1 / 13, 0, 0, 0, 1 / 13, 0, 0, 0, 1 / 13))
    model.set_A(U * B)
    assert approx_equal(model.get_A(), U * B)
    assert approx_equal(model.get_U(), U, 1e-4)
    assert approx_equal(model.get_B(), B, 1e-5)

    model3 = Crystal(real_space_a=(10, 0, 0),
                     real_space_b=(0, 11, 0),
                     real_space_c=(0, 0, 12),
                     space_group=sgtbx.space_group_info("P 222").group())
    assert model3.get_space_group().type().hall_symbol() == " P 2 2"
    assert model != model3
    #
    sgi_ref = sgtbx.space_group_info(number=230)
    model_ref = Crystal(real_space_a=(44, 0, 0),
                        real_space_b=(0, 44, 0),
                        real_space_c=(0, 0, 44),
                        space_group=sgi_ref.group())
    assert approx_equal(model_ref.get_U(), (1, 0, 0, 0, 1, 0, 0, 0, 1))
    assert approx_equal(model_ref.get_B(),
                        (1 / 44, 0, 0, 0, 1 / 44, 0, 0, 0, 1 / 44))
    assert approx_equal(model_ref.get_A(), model_ref.get_B())
    assert approx_equal(model_ref.get_unit_cell().parameters(),
                        (44, 44, 44, 90, 90, 90))
    a_ref, b_ref, c_ref = map(matrix.col, model_ref.get_real_space_vectors())
    cb_op_to_primitive = sgi_ref.change_of_basis_op_to_primitive_setting()
    model_primitive = model_ref.change_basis(cb_op_to_primitive)
    cb_op_to_reference = model_primitive.get_space_group().info()\
      .change_of_basis_op_to_reference_setting()
    a_prim, b_prim, c_prim = map(matrix.col,
                                 model_primitive.get_real_space_vectors())
    #print cb_op_to_primitive.as_abc()
    ##'-1/2*a+1/2*b+1/2*c,1/2*a-1/2*b+1/2*c,1/2*a+1/2*b-1/2*c'
    assert approx_equal(a_prim, -1 / 2 * a_ref + 1 / 2 * b_ref + 1 / 2 * c_ref)
    assert approx_equal(b_prim, 1 / 2 * a_ref - 1 / 2 * b_ref + 1 / 2 * c_ref)
    assert approx_equal(c_prim, 1 / 2 * a_ref + 1 / 2 * b_ref - 1 / 2 * c_ref)
    #print cb_op_to_reference.as_abc()
    ##b+c,a+c,a+b
    assert approx_equal(a_ref, b_prim + c_prim)
    assert approx_equal(b_ref, a_prim + c_prim)
    assert approx_equal(c_ref, a_prim + b_prim)
    assert approx_equal(model_primitive.get_U(), [
        -0.5773502691896258, 0.40824829046386285, 0.7071067811865476,
        0.5773502691896257, -0.4082482904638631, 0.7071067811865476,
        0.5773502691896257, 0.8164965809277259, 0.0
    ])
    assert approx_equal(model_primitive.get_B(), [
        0.0262431940540739, 0.0, 0.0, 0.00927837023781507, 0.02783511071344521,
        0.0, 0.01607060866333063, 0.01607060866333063, 0.03214121732666125
    ])
    assert approx_equal(
        model_primitive.get_A(),
        (0, 1 / 44, 1 / 44, 1 / 44, 0, 1 / 44, 1 / 44, 1 / 44, 0))
    assert approx_equal(model_primitive.get_unit_cell().parameters(), [
        38.1051177665153, 38.1051177665153, 38.1051177665153,
        109.47122063449069, 109.47122063449069, 109.47122063449069
    ])
    assert model_ref != model_primitive
    model_ref_recycled = model_primitive.change_basis(cb_op_to_reference)
    assert approx_equal(model_ref.get_U(), model_ref_recycled.get_U())
    assert approx_equal(model_ref.get_B(), model_ref_recycled.get_B())
    assert approx_equal(model_ref.get_A(), model_ref_recycled.get_A())
    assert approx_equal(model_ref.get_unit_cell().parameters(),
                        model_ref_recycled.get_unit_cell().parameters())
    assert model_ref == model_ref_recycled
    #
    uc = uctbx.unit_cell(
        (58.2567, 58.1264, 39.7093, 46.9077, 46.8612, 62.1055))
    sg = sgtbx.space_group_info(symbol="P1").group()
    cs = crystal.symmetry(unit_cell=uc, space_group=sg)
    cb_op_to_minimum = cs.change_of_basis_op_to_minimum_cell()
    # the reciprocal matrix
    B = matrix.sqr(uc.fractionalization_matrix()).transpose()
    U = random_rotation()
    direct_matrix = (U * B).inverse()
    model = Crystal(direct_matrix[:3],
                    direct_matrix[3:6],
                    direct_matrix[6:9],
                    space_group=sg)
    assert uc.is_similar_to(model.get_unit_cell())
    uc_minimum = uc.change_basis(cb_op_to_minimum)
    model_minimum = model.change_basis(cb_op_to_minimum)
    assert uc_minimum.is_similar_to(model_minimum.get_unit_cell())
    assert model_minimum != model
    model_minimum.update(model)
    assert model_minimum == model
    #
    from scitbx.math import euler_angles
    A_static = matrix.sqr(model.get_A())
    A_as_scan_points = [A_static]
    num_scan_points = 11
    for i in range(num_scan_points - 1):
        A_as_scan_points.append(
            A_as_scan_points[-1] *
            matrix.sqr(euler_angles.xyz_matrix(0.1, 0.2, 0.3)))
    model.set_A_at_scan_points(A_as_scan_points)
    model_minimum = model.change_basis(cb_op_to_minimum)
    assert model.num_scan_points == model_minimum.num_scan_points == num_scan_points
    M = matrix.sqr(cb_op_to_minimum.c_inv().r().transpose().as_double())
    M_inv = M.inverse()
    for i in range(num_scan_points):
        A_orig = matrix.sqr(model.get_A_at_scan_point(i))
        A_min = matrix.sqr(model_minimum.get_A_at_scan_point(i))
        assert approx_equal(A_min, A_orig * M_inv)

    mosaic_model = MosaicCrystalKabsch2010(real_space_a=(10, 0, 0),
                                           real_space_b=(0, 11, 0),
                                           real_space_c=(0, 0, 12),
                                           space_group_symbol="P 1")
    mosaic_model2 = MosaicCrystalKabsch2010(real_space_a=(10, 0, 0),
                                            real_space_b=(0, 11, 0),
                                            real_space_c=(0, 0, 12),
                                            space_group_symbol="P 1")
    assert approx_equal(mosaic_model.get_mosaicity(), 0)
    assert mosaic_model == mosaic_model2
    mosaic_model2.set_mosaicity(0.01)
    assert mosaic_model != mosaic_model2
    # FIXME Crystal == MosaicCrystal gives unexpected result, depending on
    # parameter order
    # model4 = Crystal(real_space_a=(10,0,0),
    #                  real_space_b=(0,11,0),
    #                  real_space_c=(0,0,12),
    #                  space_group_symbol="P 1")
    # print "model4 == mosaic_model", model4 == mosaic_model # True
    # print "mosaic_model == model4", mosaic_model == model4 # False
    # print "mosaic_model2 == model4", mosaic_model2 == model4 # False
    # print "model4 == mosaic_model2", model4 == mosaic_model2 # True

    mosaic_model = MosaicCrystalSauter2014(real_space_a=(10, 0, 0),
                                           real_space_b=(0, 11, 0),
                                           real_space_c=(0, 0, 12),
                                           space_group_symbol="P 1")
    mosaic_model2 = MosaicCrystalSauter2014(real_space_a=(10, 0, 0),
                                            real_space_b=(0, 11, 0),
                                            real_space_c=(0, 0, 12),
                                            space_group_symbol="P 1")
    assert approx_equal(mosaic_model.get_half_mosaicity_deg(), 0)
    assert approx_equal(mosaic_model.get_domain_size_ang(), 0)
    assert mosaic_model == mosaic_model2
    mosaic_model2.set_half_mosaicity_deg(0.01)
    assert mosaic_model != mosaic_model2
    mosaic_model2.set_half_mosaicity_deg(0)
    assert mosaic_model == mosaic_model2
    mosaic_model2.set_domain_size_ang(1000)
    assert mosaic_model != mosaic_model2