def test_glm(): data = np.load("../examples/data/eeg_32chans_10secs.npy") num_ts, ts_len = np.shape(data) window_size = ts_len / 2.0 fb_lo = [4.0, 8.0] fb_hi = [25.0, 40.0] fs = 128.0 ts, ts_avg = glm(data, fb_lo, fb_hi, fs, pairs=None, window_size=window_size) expected = np.load("data/test_glm_ts.npy") np.testing.assert_array_equal(ts, expected) expected = np.load("data/test_glm_avg.npy") np.testing.assert_array_equal(ts_avg, expected)
# -*- coding: utf-8 -*- import numpy as np np.set_printoptions(precision=3, linewidth=256) from dyfunconn.fc import glm if __name__ == "__main__": data = np.load( "/home/makism/Github/dyfunconn/examples/data/eeg_32chans_10secs.npy") data = data[0:5, :] num_ts, ts_len = np.shape(data) pairs = [(r1, r2) for r1 in xrange(0, num_ts) for r2 in xrange(r1, num_ts)] window_size = ts_len / 2.0 fb_lo = [4.0, 8.0] fb_hi = [25.0, 40.0] fs = 128.0 ts, ts_avg = glm(data, fb_lo, fb_hi, fs, pairs=pairs, window_size=window_size) print ts_avg