Ejemplo n.º 1
0
def setup_module(module):
    global tvfcg_plv_ts
    global tvfcg_plv_fcgs
    global tvfcg_pac_plv_fcgs

    original_data = np.load("../examples/data/eeg_32chans_10secs.npy")

    # TVFCGS with PLV
    data = original_data[0:2, 0:1024]
    fb = [1.0, 4.0]
    fs = 128
    estimator = PLV(fb, fs)
    tvfcg_plv_fcgs = tvfcg(data, estimator, fb, fs)
    # tvfcg_plv_fcgs = np.real(tvfcg_plv_fcgs)
    # np.save("data/test_tvfcgs_plv.npy", tvfcg_plv_fcgs)

    # TVFCGS with PAC and PLV
    data = original_data[..., 0:1024]
    fb = [1.0, 4.0]
    fs = 128
    f_lo = fb
    f_hi = [20.0, 30.0]
    estimator = PLV(fb, fs)
    pac = PAC(f_lo, f_hi, fs, estimator)
    tvfcg_pac_plv_fcgs = tvfcg_cfc(data, pac, f_lo, f_hi, fs)
Ejemplo n.º 2
0
def test_pac_multiple_channels():
    data = np.load("../examples/data/eeg_32chans_10secs.npy")

    fs = 128
    fb_lo = [1.0, 4.0]
    fb_hi = [
        20.0,
        30.0,
    ]

    estimator = PLV(fb_lo, fs)
    ts, avg = pac(data, fb_lo, fb_hi, 128, estimator)
    ts = np.nan_to_num(ts)
    avg = np.nan_to_num(avg)

    expected_ts = np.load("data/test_pac_plv_ts.npy")
    expected_ts = np.nan_to_num(ts)
    np.testing.assert_array_equal(ts, expected_ts)

    avg = np.float32(avg)

    expected_avg = np.load("data/test_pac_plv_avg.npy")
    expected_avg = np.nan_to_num(expected_avg)
    expected_avg = np.float32(expected_avg)
    np.testing.assert_allclose(avg, expected_avg, rtol=1e-10, atol=0.0)
Ejemplo n.º 3
0
def try_TVFCG_PAC(data):

    fb = [1.0, 4.0]
    fs = 128
    f_lo = fb
    f_hi = [20.0, 30.0]
    estimator = PLV(fb, fs)
    pac = PAC(f_lo, f_hi, fs, estimator)
    fcgs = tvfcg_cfc(data, pac, f_lo, f_hi, fs)

    return fcgs
Ejemplo n.º 4
0
def test_pac_one_channel():
    data = np.load("../examples/data/eeg_32chans_10secs.npy")
    data = data[0:1, 0:128]

    fs = 128
    f_lo = [1.0, 4.0]
    f_hi = [20.0, 30.0]

    estimator = PLV(f_lo, fs)
    ts, avg = pac(data, f_lo, f_hi, fs, estimator)

    avg = np.squeeze(np.real(avg))

    expected = 0.468296707219
    nose.tools.assert_almost_equal(avg, expected)
Ejemplo n.º 5
0
def try_PAC(data):
    fb = [1.0, 4.0]
    fs = 128
    pairs = None
    n_jobs = 1

    plv = PLV(fb, fs, pairs)

    f_lo = [1.0, 4.0]
    f_hi = [20.0, 30.0]
    pac = PAC(f_lo, f_hi, fs, plv)
    phases, phases_lohi = pac.preprocess(data)
    cfc, avg = pac.estimate(phases, phases_lohi)

    return cfc, avg
Ejemplo n.º 6
0
def test_pac_multiple_channels():
    data = np.load("../examples/data/eeg_32chans_10secs.npy")

    fs = 128
    fb_lo = [1.0, 4.0]
    fb_hi = [
        20.0,
        30.0,
    ]

    estimator = PLV(fb_lo, fs)
    ts, avg = pac(data, fb_lo, fb_hi, 128, estimator)

    ts = np.real(ts)

    expected_ts = np.load("data/test_pac_plv_ts.npy")
    expected_ts = np.real(ts)

    np.testing.assert_array_equal(ts, expected_ts)

    expected_avg = np.load("data/test_pac_plv_avg.npy")
    np.testing.assert_array_equal(avg, expected_avg)
Ejemplo n.º 7
0
    fs = 128.0

    now = time.time()
    ts, avg = plv(data, fb, fs)
    print "Finished in", time.time() - now, "sec"

    # TVFCGs from time seriess
    now = time.time()
    fcgs = tvfcg_ts(ts, [1.0, 4.0], 128)
    print "Finished in", time.time() - now, "sec"

    # TVFCGs
    fb = [1.0, 4.0]
    fs = 128.0

    estimator = PLV(fb, fs)
    fcgs = tvfcg(data, estimator, fb, fs)

    # PAC
    lo = [1.0, 4.0]
    hi = [8.0, 13.0]
    fs = 128.0
    estimator = PLV(fb, fs)

    now = time.time()
    cfc_ts, cfc_avg = pac(data, lo, hi, fs, estimator)
    print "Finished in", time.time() - now, "sec"

    # TVFCGs + PAC
    pac_estimator = PAC(lo, hi, fs, estimator)
Ejemplo n.º 8
0
import numpy as np
np.set_printoptions(precision=3, linewidth=256)

from dyfunconn.fc import pac, PAC, PLV

if __name__ == "__main__":
    data = np.load(
        "/home/makism/Github/dyfunconn/examples/data/eeg_32chans_10secs.npy")

    #
    # Common configuration
    #
    fb = [1.0, 4.0]
    fs = 128
    pairs = None
    estimator = PLV(fb, fs, pairs)

    f_lo = [1.0, 4.0]
    f_hi = [20.0, 30.0]

    #
    # Functional
    #
    cfc, avg = pac(data, f_lo, f_hi, fs, estimator, pairs=None)

    print(avg)

    #
    # Object-oriented
    #
    pac = PAC(f_lo, f_hi, fs, estimator)