Ejemplo n.º 1
0
#!/usr/bin/env python

import pandas as pd
import numpy as np
import sklearn.decomposition
import dynclipy

import time
checkpoints = {}

#####################################
###           LOAD DATA           ###
#####################################
task = dynclipy.main(definition_location = "/tests/python/definition.yml")

expression = task["expression"]
params = task["parameters"]
cell_ids = expression.index

if "start_id" in task["priors"]:
  start_id = task["priors"]["start_id"]
else:
  start_id = None

checkpoints["method_afterpreproc"] = time.time()


#####################################
###        INFER TRAJECTORY       ###
#####################################
# do PCA
Ejemplo n.º 2
0
#!/usr/local/bin/python

import dynclipy
task = dynclipy.main()

import pandas as pd
import numpy as np
import json

from pymatcher import matcher

import time
checkpoints = {}

#   ____________________________________________________________________________
#   Load data                                                               ####
expression = task["expression"]
parameters = task["parameters"]

#   ____________________________________________________________________________
#   Infer trajectory                                                        ####
m = matcher.MATCHER([expression.values])
m.infer(quantiles=parameters["quantiles"], method=parameters["method"])

checkpoints["method_aftermethod"] = time.time()

#   ____________________________________________________________________________
#   Save output                                                             ####
dataset = dynclipy.wrap_data(cell_ids=expression.index)

# pseudotime
Ejemplo n.º 3
0
#!/usr/bin/env python

import dynclipy
dataset = dynclipy.main()

import pandas as pd
import sklearn.decomposition

# infer trajectory
pca = sklearn.decomposition.PCA()
dimred = pca.fit_transform(dataset['expression'])
pseudotime = pd.Series(dimred[:, dataset['parameters']['component'] - 1],
                       index=dataset['expression'].index)

# build trajectory
trajectory = dynclipy.wrap_data(cell_ids=dataset['expression'].index)
trajectory.add_linear_trajectory(pseudotime=pseudotime)

# save output
trajectory.write_output(dataset['output'])