Ejemplo n.º 1
0
def test_sample():
    # test sampling of two overlapping ellipsoids that samples are uniform
    # within
    rad = 1
    shift = 0.75
    ndim = 10
    cen1 = np.zeros(ndim)
    cen2 = np.zeros(ndim)
    cen2[0] = shift
    sig = np.eye(10) * rad**2
    ells = [db.Ellipsoid(cen1, sig), db.Ellipsoid(cen2, sig)]
    mu = db.MultiEllipsoid(ells)
    R = []
    nsim = 100000
    rstate = get_rstate()
    for i in range(nsim):
        R.append(mu.sample(rstate=rstate)[0])
    R = np.array(R)
    assert (all([mu.contains(_) for _ in R]))

    # here I'm checking that all the points are uniformly distributed
    # within each ellipsoid
    for curc in [cen1, cen2]:
        dist1 = (np.sqrt(np.sum((R - curc)**2, axis=1)) / rad)
        # radius from 0 to 1
        xdist1 = dist1**ndim
        # should be uniformly distributed from 0 to 1
        xdist1 = xdist1[xdist1 < 1]
        pval = scipy.stats.kstest(xdist1,
                                  scipy.stats.uniform(loc=0.0, scale=1).cdf)[1]
        assert ((pval > 0.003) & (pval < 0.997))
    nhalf = (R[:, 0] > shift / 2.).sum()
    print(nhalf, nsim)
    assert (np.abs(nhalf - 0.5 * nsim) < 5 * np.sqrt(0.5 * nsim))
Ejemplo n.º 2
0
def test_overlap():
    rstate = get_rstate()
    ndim = 2
    cen1 = np.array([0, 0])
    cen2 = np.array([1, 0])
    rad = 0.7
    sig = np.eye(ndim) * rad**2

    ell1 = db.Ellipsoid(cen1, sig)
    ell2 = db.Ellipsoid(cen2, sig)
    ell = db.MultiEllipsoid([ell1, ell2])
    nsamp = 10000
    xs = rstate.uniform(size=(nsamp, ndim))
    ind1 = np.sum((xs - cen1[None, :])**2, axis=1) < rad**2
    ind2 = np.sum((xs - cen2[None, :])**2, axis=1) < rad**2
    for i in range(nsamp):
        n1 = int(ind1[i])
        n2 = int(ind2[i])
        assert ell.overlap(xs[i]) == n1 + n2
        assert ell.overlap(xs[i], j=0) == n2
        within = ell.within(xs[i])
        within2 = []
        if n1 == 1:
            within2.append(0)
        if n2 == 1:
            within2.append(1)
        within2 = np.array(within2)
        assert np.all(within == within2)
Ejemplo n.º 3
0
def test_mc_logvol():
    def capvol(n, r, h):
        # see https://en.wikipedia.org/wiki/Spherical_cap
        Cn = np.pi**(n / 2.) / scipy.special.gamma(1 + n / 2.)
        return (
            Cn * r**n *
            (1 / 2 - (r - h) / r * scipy.special.gamma(1 + n / 2) /
             np.sqrt(np.pi) / scipy.special.gamma(
                 (n + 1.) / 2) * scipy.special.hyp2f1(1. / 2,
                                                      (1 - n) / 2, 3. / 2,
                                                      ((r - h) / r)**2)))

    def sphere_vol(n, r):
        Cn = np.pi**(n / 2.) / scipy.special.gamma(1 + n / 2.) * r**n
        return Cn

    def two_sphere_vol(c1, c2, r1, r2):
        D = np.sqrt(np.sum((c1 - c2)**2))
        n = len(c1)
        if D >= r1 + r2:
            return sphere_vol(n, r1) + sphere_vol(n, r2)
        # now either one is fully inside or the is overlap
        if D + r1 <= r2 or D + r2 <= r1:
            #fully inside
            return max(sphere_vol(n, r1), sphere_vol(n, r2))
        else:
            x = 1. / 2 / D * np.sqrt(2 * r1**2 * r2**2 + 2 * D**2 * r1**2 +
                                     2 * D**2 * r2**2 - r1**4 - r2**4 - D**4)
            capsize1 = r1 - np.sqrt(r1**2 - x**2)
            capsize2 = r2 - np.sqrt(r2**2 - x**2)
            V = (sphere_vol(n, r1) + sphere_vol(n, r2) -
                 capvol(n, r1, capsize1) - capvol(n, r2, capsize2))
            return V

    rstate = get_rstate()
    ndim = 10
    cen1 = np.zeros(ndim)
    cen2 = np.zeros(ndim)
    r1 = 1
    r2 = 0.5
    sig1 = np.eye(ndim) * r1**2
    sig2 = np.eye(ndim) * r2**2
    Ds = np.linspace(0, 2, 30)
    nsamp = 10000
    for D in Ds:
        cen2[0] = D
        ell = db.MultiEllipsoid(
            [db.Ellipsoid(cen1, sig1),
             db.Ellipsoid(cen2, sig2)])
        lv = ell.monte_carlo_logvol(nsamp, rstate=rstate)[0]
        vtrue = two_sphere_vol(cen1, cen2, r1, r2)
        assert (np.abs(np.log(vtrue) - lv) < 1e-2)
Ejemplo n.º 4
0
def test_sample(withq, ndim):
    # test sampling of two overlapping ellipsoids that samples are uniform
    # within
    rad = 1
    shift = 0.75
    cen1 = np.zeros(ndim)
    cen2 = np.zeros(ndim)
    cen2[0] = shift
    sig = np.eye(ndim) * rad**2
    ells = [db.Ellipsoid(cen1, sig), db.Ellipsoid(cen2, sig)]
    mu = db.MultiEllipsoid(ells)
    R = []
    nsim = 100000
    rstate = get_rstate()
    if withq:
        for i in range(nsim):
            while True:
                x, _, q = mu.sample(return_q=True, rstate=rstate)
                if rstate.uniform() < 1. / q:
                    R.append(x)
                    break
    else:
        for i in range(nsim):
            R.append(mu.sample(rstate=rstate)[0])
    R = np.array(R)
    assert (all([mu.contains(_) for _ in R]))
    assert (all([ells[0].contains(_) or ells[1].contains(_) for _ in R]))

    # here I'm checking that all the points are uniformly distributed
    # within each ellipsoid
    for curc in [cen1, cen2]:
        dist1 = (np.sqrt(np.sum((R - curc)**2, axis=1)) / rad)
        # radius from 0 to 1
        xdist1 = dist1**ndim
        # should be uniformly distributed from 0 to 1
        xdist1 = xdist1[xdist1 < 1]
        pval = scipy.stats.kstest(xdist1,
                                  scipy.stats.uniform(loc=0.0, scale=1).cdf)[1]
        assert ((pval > PVAL) & (pval < (1 - PVAL)))
    nhalf = (R[:, 0] > shift / 2.).sum()
    assert (np.abs(nhalf - 0.5 * nsim) < 5 * np.sqrt(0.5 * nsim))
Ejemplo n.º 5
0
def test_cube_overlap():
    rstate = get_rstate()
    ndim = 10
    cen = np.zeros(ndim) + .5
    cen[0] = 0
    sig = np.eye(ndim) * .5**2
    ell = db.Ellipsoid(cen, sig)
    nsamp = 10000
    frac = ell.unitcube_overlap(nsamp, rstate=rstate)
    true_answer = 0.5
    uncertainty = np.sqrt(true_answer * (1 - true_answer) / nsamp)
    assert ((frac - true_answer) < 5 * uncertainty)
Ejemplo n.º 6
0
def test_samples_multi():
    rstate = get_rstate()
    ndim = 10
    cen = np.zeros(ndim) + .5
    sig = np.eye(ndim)
    ell = db.MultiEllipsoid([db.Ellipsoid(cen, sig)])
    nsamp = 10000
    X = ell.samples(nsamp, rstate=rstate)
    R = np.sqrt(((X - cen[None, :])**2).sum(axis=1))
    xdist1 = R**ndim
    pval = scipy.stats.kstest(xdist1,
                              scipy.stats.uniform(loc=0.0, scale=1).cdf)[1]
    assert ((pval > 1e-3) and (pval < 1 - 1e-3))
Ejemplo n.º 7
0
def computer(fitpts, testpts, bound='multi', bootstrap=None, rstate=None):
    """ Compute logvolume and fraction of points covered
    given actual live points (fitpts) and test points (testpts)"""
    # ndim = fitpts.shape[-1]
    cent = fitpts.mean(axis=0)
    cov = np.cov(fitpts.T)  # ndim)
    curb = db.Ellipsoid(cent, cov)  # pts)
    curb.update(fitpts, rstate=rstate, bootstrap=bootstrap)
    if bound == 'multi':
        curb = db.MultiEllipsoid([curb])
        curb.update(fitpts, rstate=rstate, bootstrap=bootstrap)
    if bound not in ['single', 'multi']:
        raise RuntimeError('unknown bound', bound)
    frac = np.array([curb.contains(_) for _ in testpts]).sum() / len(testpts)
    if bound == 'single':
        nell = 1
        logvol = curb.logvol
    else:
        nell = len(curb.ells)
        logvol = curb.logvol_tot
    return logvol, frac, nell