def run( self, model: Model, inputs: T, criterion: Union[Criterion, T], *, early_stop: Optional[float] = None, starting_points: Optional[ep.Tensor] = None, **kwargs: Any, ) -> T: originals, restore_type = ep.astensor_(inputs) self._nqueries = {i: 0 for i in range(len(originals))} self._set_cos_sin_function(originals) self.theta_max = ep.ones(originals, len(originals)) * self._theta_max criterion = get_criterion(criterion) self._criterion_is_adversarial = get_is_adversarial(criterion, model) # Get Starting Point if starting_points is not None: best_advs = starting_points elif starting_points is None: init_attack: MinimizationAttack = LinearSearchBlendedUniformNoiseAttack(steps=50) best_advs = init_attack.run(model, originals, criterion, early_stop=early_stop) else: raise ValueError("starting_points {} doesn't exist.".format(starting_points)) assert self._is_adversarial(best_advs).all() # Initialize the direction orthogonalized with the first direction fd = best_advs - originals norm = ep.norms.l2(fd.flatten(1), axis=1) fd = fd / atleast_kd(norm, fd.ndim) self._directions_ortho = {i: v.expand_dims(0) for i, v in enumerate(fd)} # Load Basis if "basis_params" in kwargs: self._basis = Basis(originals, **kwargs["basis_params"]) else: self._basis = Basis(originals) for _ in range(self._steps): # Get candidates. Shape: (n_candidates, batch_size, image_size) candidates = self._get_candidates(originals, best_advs) candidates = candidates.transpose((1, 0, 2, 3, 4)) best_candidates = ep.zeros_like(best_advs).raw for i, o in enumerate(originals): o_repeated = ep.concatenate([o.expand_dims(0)] * len(candidates[i]), axis=0) index = ep.argmax(self.distance(o_repeated, candidates[i])).raw best_candidates[i] = candidates[i][index].raw is_success = self.distance(best_candidates, originals) < self.distance(best_advs, originals) best_advs = ep.where(atleast_kd(is_success, best_candidates.ndim), ep.astensor(best_candidates), best_advs) if all(v > self._max_queries for v in self._nqueries.values()): print("Max queries attained for all the images.") break return restore_type(best_advs)
def l2_clipping_aware_rescaling(x, delta, eps: float, a: float = 0.0, b: float = 1.0): # type: ignore """Calculates eta such that norm(clip(x + eta * delta, a, b) - x) == eps. Assumes x and delta have a batch dimension and eps, a, b, and p are scalars. If the equation cannot be solved because eps is too large, the left hand side is maximized. Args: x: A batch of inputs (PyTorch Tensor, TensorFlow Eager Tensor, NumPy Array, JAX Array, or EagerPy Tensor). delta: A batch of perturbation directions (same shape and type as x). eps: The target norm (non-negative float). a: The lower bound of the data domain (float). b: The upper bound of the data domain (float). Returns: eta: A batch of scales with the same number of dimensions as x but all axis == 1 except for the batch dimension. """ (x, delta), restore_fn = ep.astensors_(x, delta) N = x.shape[0] assert delta.shape[0] == N rows = ep.arange(x, N) delta2 = delta.square().reshape((N, -1)) space = ep.where(delta >= 0, b - x, x - a).reshape((N, -1)) f2 = space.square() / ep.maximum(delta2, 1e-20) ks = ep.argsort(f2, axis=-1) f2_sorted = f2[rows[:, ep.newaxis], ks] m = ep.cumsum(delta2[rows[:, ep.newaxis], ks.flip(axis=1)], axis=-1).flip(axis=1) dx = f2_sorted[:, 1:] - f2_sorted[:, :-1] dx = ep.concatenate((f2_sorted[:, :1], dx), axis=-1) dy = m * dx y = ep.cumsum(dy, axis=-1) c = y >= eps**2 # work-around to get first nonzero element in each row f = ep.arange(x, c.shape[-1], 0, -1) j = ep.argmax(c.astype(f.dtype) * f, axis=-1) eta2 = f2_sorted[rows, j] - (y[rows, j] - eps**2) / m[rows, j] # it can happen that for certain rows even the largest j is not large enough # (i.e. c[:, -1] is False), then we will just use it (without any correction) as it's # the best we can do (this should also be the only cases where m[j] can be # 0 and they are thus not a problem) eta2 = ep.where(c[:, -1], eta2, f2_sorted[:, -1]) eta = ep.sqrt(eta2) eta = eta.reshape((-1, ) + (1, ) * (x.ndim - 1)) # xp = ep.clip(x + eta * delta, a, b) # l2 = (xp - x).reshape((N, -1)).square().sum(axis=-1).sqrt() return restore_fn(eta)
def test_argmax_axis(t: Tensor) -> Tensor: return ep.argmax(t, axis=0)
def test_argmax(t: Tensor) -> Tensor: return ep.argmax(t)
def run( self, model: Model, inputs: T, criterion: TargetedMisclassification, *, epsilon: float, **kwargs: Any, ) -> T: raise_if_kwargs(kwargs) x, restore_type = ep.astensor_(inputs) del inputs, kwargs N = len(x) if isinstance(criterion, TargetedMisclassification): classes = criterion.target_classes else: raise ValueError("unsupported criterion") if classes.shape != (N, ): raise ValueError( f"expected target_classes to have shape ({N},), got {classes.shape}" ) noise_shape: Union[Tuple[int, int, int, int], Tuple[int, ...]] channel_axis: Optional[int] = None if self.reduced_dims is not None: if x.ndim != 4: raise NotImplementedError( "only implemented for inputs with two spatial dimensions" " (and one channel and one batch dimension)") if self.channel_axis is None: maybe_axis = get_channel_axis(model, x.ndim) if maybe_axis is None: raise ValueError( "cannot infer the data_format from the model, please" " specify channel_axis when initializing the attack") else: channel_axis = maybe_axis else: channel_axis = self.channel_axis % x.ndim if channel_axis == 1: noise_shape = (x.shape[1], *self.reduced_dims) elif channel_axis == 3: noise_shape = (*self.reduced_dims, x.shape[3]) else: raise ValueError( "expected 'channel_axis' to be 1 or 3, got {channel_axis}") else: noise_shape = x.shape[1:] # pragma: no cover def is_adversarial(logits: ep.TensorType) -> ep.TensorType: return ep.argmax(logits, 1) == classes num_plateaus = ep.zeros(x, len(x)) mutation_probability = (ep.ones_like(num_plateaus) * self.min_mutation_probability) mutation_range = ep.ones_like(num_plateaus) * self.min_mutation_range noise_pops = ep.uniform(x, (N, self.population, *noise_shape), -epsilon, epsilon) def calculate_fitness(logits: ep.TensorType) -> ep.TensorType: first = logits[range(N), classes] second = ep.log(ep.exp(logits).sum(1) - first) return first - second n_its_wo_change = ep.zeros(x, (N, )) for step in range(self.steps): fitness_l, is_adv_l = [], [] for i in range(self.population): it = self.apply_noise(x, noise_pops[:, i], epsilon, channel_axis) logits = model(it) f = calculate_fitness(logits) a = is_adversarial(logits) fitness_l.append(f) is_adv_l.append(a) fitness = ep.stack(fitness_l) is_adv = ep.stack(is_adv_l, 1) elite_idxs = ep.argmax(fitness, 0) elite_noise = noise_pops[range(N), elite_idxs] is_adv = is_adv[range(N), elite_idxs] # early stopping if is_adv.all(): return restore_type( # pragma: no cover self.apply_noise(x, elite_noise, epsilon, channel_axis)) probs = ep.softmax(fitness / self.sampling_temperature, 0) parents_idxs = np.stack( [ self.choice( self.population, 2 * self.population - 2, replace=True, p=probs[:, i], ) for i in range(N) ], 1, ) mutations = [ ep.uniform( x, noise_shape, -mutation_range[i].item() * epsilon, mutation_range[i].item() * epsilon, ) for i in range(N) ] new_noise_pops = [elite_noise] for i in range(0, self.population - 1): parents_1 = noise_pops[range(N), parents_idxs[2 * i]] parents_2 = noise_pops[range(N), parents_idxs[2 * i + 1]] # calculate crossover p = probs[parents_idxs[2 * i], range(N)] / ( probs[parents_idxs[2 * i], range(N)] + probs[parents_idxs[2 * i + 1], range(N)]) p = atleast_kd(p, x.ndim) p = ep.tile(p, (1, *noise_shape)) crossover_mask = ep.uniform(p, p.shape, 0, 1) < p children = ep.where(crossover_mask, parents_1, parents_2) # calculate mutation mutation_mask = ep.uniform(children, children.shape) mutation_mask = mutation_mask <= atleast_kd( mutation_probability, children.ndim) children = ep.where(mutation_mask, children + mutations[i], children) # project back to epsilon range children = ep.clip(children, -epsilon, epsilon) new_noise_pops.append(children) noise_pops = ep.stack(new_noise_pops, 1) # increase num_plateaus if fitness does not improve # for 100 consecutive steps n_its_wo_change = ep.where(elite_idxs == 0, n_its_wo_change + 1, ep.zeros_like(n_its_wo_change)) num_plateaus = ep.where(n_its_wo_change >= 100, num_plateaus + 1, num_plateaus) n_its_wo_change = ep.where(n_its_wo_change >= 100, ep.zeros_like(n_its_wo_change), n_its_wo_change) mutation_probability = ep.maximum( self.min_mutation_probability, 0.5 * ep.exp( math.log(0.9) * ep.ones_like(num_plateaus) * num_plateaus), ) mutation_range = ep.maximum( self.min_mutation_range, 0.5 * ep.exp( math.log(0.9) * ep.ones_like(num_plateaus) * num_plateaus), ) return restore_type( self.apply_noise(x, elite_noise, epsilon, channel_axis))
def is_adversarial(logits: ep.TensorType) -> ep.TensorType: return ep.argmax(logits, 1) == classes