Ejemplo n.º 1
0
    def clip_perturbation(self, references: T, perturbed: T,
                          epsilon: float) -> T:
        """Clips the perturbations to epsilon and returns the new perturbed

        Args:
            references: A batch of reference inputs.
            perturbed: A batch of perturbed inputs.

        Returns:
            A tenosr like perturbed but with the perturbation clipped to epsilon.
        """
        (x, y), restore_type = ep.astensors_(references, perturbed)
        p = y - x
        if self.p == ep.inf:
            clipped_perturbation = ep.clip(p, -epsilon, epsilon)
            return restore_type(x + clipped_perturbation)
        norms = ep.norms.lp(flatten(p), self.p, axis=-1)
        norms = ep.maximum(norms, 1e-12)  # avoid divsion by zero
        factor = epsilon / norms
        factor = ep.minimum(
            1, factor)  # clipping -> decreasing but not increasing
        if self.p == 0:
            if (factor == 1).all():
                return perturbed
            raise NotImplementedError("reducing L0 norms not yet supported")
        factor = atleast_kd(factor, x.ndim)
        clipped_perturbation = factor * p
        return restore_type(x + clipped_perturbation)
def clip_l2_norms(x: ep.Tensor, norm: float) -> ep.Tensor:
    norms = flatten(x).square().sum(axis=-1).sqrt()
    norms = ep.maximum(norms, 1e-12)  # avoid divsion by zero
    factor = ep.minimum(1, norm /
                        norms)  # clipping -> decreasing but not increasing
    factor = atleast_kd(factor, x.ndim)
    return x * factor
Ejemplo n.º 3
0
 def project(self, x: ep.Tensor, x0: ep.Tensor,
             epsilon: ep.Tensor) -> ep.Tensor:
     norms = flatten(x).norms.l2(axis=-1)
     norms = ep.maximum(norms, 1e-12)
     factor = ep.minimum(1, norms / norms)
     factor = atleast_kd(factor, x.ndim)
     return x0 + (x - x0) * factor
Ejemplo n.º 4
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, Any] = None,
        *,
        epsilon: float,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        del inputs, criterion, kwargs

        verify_input_bounds(x, model)

        min_, max_ = model.bounds
        target = min_ + self.target * (max_ - min_)

        direction = target - x
        norms = ep.norms.l2(flatten(direction), axis=-1)
        scale = epsilon / atleast_kd(norms, direction.ndim)
        scale = ep.minimum(scale, 1)

        x = x + scale * direction
        x = x.clip(min_, max_)
        return restore_type(x)
def clip_lp_norms(x: ep.Tensor, *, norm: float, p: float) -> ep.Tensor:
    assert 0 < p < ep.inf
    norms = flatten(x).norms.lp(p=p, axis=-1)
    norms = ep.maximum(norms, 1e-12)  # avoid divsion by zero
    factor = ep.minimum(1, norm / norms)  # clipping -> decreasing but not increasing
    factor = atleast_kd(factor, x.ndim)
    return x * factor
Ejemplo n.º 6
0
    def __call__(self, model: Model, inputs: T,
                 criterion: Union[Misclassification, T]) -> T:

        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion

        N = len(x)

        if isinstance(criterion_, Misclassification):
            classes = criterion_.labels
        else:
            raise ValueError("unsupported criterion")

        if classes.shape != (N, ):
            raise ValueError(
                f"expected labels to have shape ({N},), got {classes.shape}")

        min_, max_ = model.bounds

        x_l2_norm = flatten(x.square()).sum(1)

        def loss_fun(
                x: ep.Tensor) -> Tuple[ep.Tensor, Tuple[ep.Tensor, ep.Tensor]]:
            logits = model(x)
            scores = ep.softmax(logits)
            pred_scores = scores[range(N), classes]
            loss = pred_scores.sum()
            return loss, (scores, pred_scores)

        for i in range(self.steps):
            # (1) get the scores and gradients
            _, (scores,
                pred_scores), gradients = ep.value_aux_and_grad(loss_fun, x)

            pred = scores.argmax(-1)
            num_classes = scores.shape[-1]

            # (2) calculate gradient norm
            gradients_l2_norm = flatten(gradients.square()).sum(1)

            # (3) calculate delta
            a = self.stepsize * x_l2_norm * gradients_l2_norm
            b = pred_scores - 1.0 / num_classes

            delta = ep.minimum(a, b)

            # (4) stop the attack if an adversarial example has been found
            # this is not described in the paper but otherwise once the prob. drops
            # below chance level the likelihood is not decreased but increased
            is_not_adversarial = (pred == classes).float32()
            delta *= is_not_adversarial

            # (5) calculate & apply current perturbation
            a = atleast_kd(delta / gradients_l2_norm.square(), gradients.ndim)
            x -= a * gradients

            x = ep.clip(x, min_, max_)

        return restore_type(x)
Ejemplo n.º 7
0
 def __call__(self, inputs, labels, *, epsilon):
     x = ep.astensor(inputs)
     min_, max_ = self.model.bounds()
     target = (max_ + min_) / 2
     v = target - x
     norms = flatten(v).square().sum(axis=-1).sqrt()
     scale = epsilon / atleast_kd(norms, v.ndim)
     scale = ep.minimum(scale, 1)
     x = x + scale * v
     x = x.clip(min_, max_)
     return x.tensor
Ejemplo n.º 8
0
def _project_shrinkage_thresholding(
    z: ep.Tensor, x0: ep.Tensor, regularization: float, min_: float, max_: float
) -> ep.Tensor:
    """Performs the element-wise projected shrinkage-thresholding
    operation"""

    upper_mask = z - x0 > regularization
    lower_mask = z - x0 < -regularization

    projection = ep.where(upper_mask, ep.minimum(z - regularization, max_), x0)
    projection = ep.where(lower_mask, ep.maximum(z + regularization, min_), projection)

    return projection
Ejemplo n.º 9
0
def project_shrinkage_thresholding(z: ep.Tensor, x0: ep.Tensor,
                                   regularization: float, min_: float,
                                   max_: float) -> ep.Tensor:
    """Performs the element-wise projected shrinkage-thresholding
    operation"""

    upper_mask = (z - x0 > regularization).float32()
    lower_mask = (z - x0 < -regularization).float32()

    projection = ((1.0 - upper_mask - lower_mask) * x0 +
                  upper_mask * ep.minimum(z - regularization, max_) +
                  lower_mask * ep.maximum(z + regularization, min_))

    return projection
Ejemplo n.º 10
0
    def __call__(self,
                 model: Model,
                 inputs: T,
                 criterion: Union[Criterion, Any] = None) -> T:
        x, restore_type = ep.astensor_(inputs)
        del inputs, criterion

        min_, max_ = model.bounds
        target = min_ + self.target * (max_ - min_)

        direction = target - x
        norms = ep.norms.l2(flatten(direction), axis=-1)
        scale = self.epsilon / atleast_kd(norms, direction.ndim)
        scale = ep.minimum(scale, 1)

        x = x + scale * direction
        x = x.clip(min_, max_)
        return restore_type(x)
Ejemplo n.º 11
0
def apply_decision_rule(
    decision_rule: str,
    beta: float,
    best_advs: ep.Tensor,
    best_advs_norms: ep.Tensor,
    x_k: ep.Tensor,
    x_0: ep.Tensor,
    found_advs: ep.Tensor,
):
    if decision_rule == "EN":
        norms = beta * flatten(x_k - x_0).abs().sum(
            axis=-1) + flatten(x_k - x_0).square().sum(axis=-1)
    elif decision_rule == "L1":
        norms = flatten(x_k - x_0).abs().sum(axis=-1)
    else:
        raise ValueError("invalid decision rule")

    new_best = (norms < best_advs_norms).float32() * found_advs.float32()
    new_best = atleast_kd(new_best, best_advs.ndim)
    best_advs = new_best * x_k + (1 - new_best) * best_advs
    best_advs_norms = ep.minimum(norms, best_advs_norms)

    return best_advs, best_advs_norms
Ejemplo n.º 12
0
def test_minimum(ttaa):
    t1, t2, a1, a2 = ttaa
    assert (ep.minimum(t1, t2).numpy() == np.minimum(a1, a2)).all()
Ejemplo n.º 13
0
def test_rminimum_scalar(t: Tensor) -> Tensor:
    return ep.minimum(3, t)
Ejemplo n.º 14
0
def test_minimum_scalar(t: Tensor) -> Tensor:
    return ep.minimum(t, 3)
Ejemplo n.º 15
0
def test_minimum(t1: Tensor, t2: Tensor) -> Tensor:
    return ep.minimum(t1, t2)
Ejemplo n.º 16
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, Any] = None,
        *,
        early_stop: Optional[float] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion, kwargs

        is_adversarial = get_is_adversarial(criterion_, model)

        min_, max_ = model.bounds

        N = len(x)

        for j in range(self.directions):
            # random noise inputs tend to be classified into the same class,
            # so we might need to make very many draws if the original class
            # is that one
            random_ = ep.uniform(x, x.shape, min_, max_)
            is_adv_ = atleast_kd(is_adversarial(random_), x.ndim)

            if j == 0:
                random = random_
                is_adv = is_adv_
            else:
                random = ep.where(is_adv, random, random_)
                is_adv = is_adv.logical_or(is_adv_)

            if is_adv.all():
                break

        if not is_adv.all():
            warnings.warn(
                f"{self.__class__.__name__} failed to draw sufficient random"
                f" inputs that are adversarial ({is_adv.sum()} / {N}).")

        x0 = x

        epsilons = np.linspace(0, 1, num=self.steps + 1, dtype=np.float32)
        best = ep.ones(x, (N, ))

        for epsilon in epsilons:
            x = (1 - epsilon) * x0 + epsilon * random
            # TODO: due to limited floating point precision, clipping can be required
            is_adv = is_adversarial(x)

            epsilon = epsilon.item()

            best = ep.minimum(ep.where(is_adv, epsilon, 1.0), best)

            if (best < 1).all():
                break

        best = atleast_kd(best, x0.ndim)
        x = (1 - best) * x0 + best * random

        return restore_type(x)
Ejemplo n.º 17
0
    def __call__(
        self,
        model: Model,
        inputs,
        labels,
        *,
        criterion=misclassification,
        channel_axis: Optional[int] = None,
    ):
        """
        Parameters
        ----------
        channel_axis
            The axis across which the noise should be the same (if across_channels is True).
            If None, will be automatically inferred from the model if possible.
        """
        inputs, labels, restore = wrap(inputs, labels)
        is_adversarial = get_is_adversarial(criterion, inputs, labels, model)

        x0 = inputs
        N = len(x0)
        shape = list(x0.shape)
        if self.across_channels and x0.ndim > 2:
            if channel_axis is None and not hasattr(model, "data_format"):
                raise ValueError(
                    "cannot infer the data_format from the model, please specify"
                    " channel_axis when calling the attack")
            elif channel_axis is None:
                data_format = model.data_format  # type: ignore
                if (data_format is None or data_format != "channels_first"
                        and data_format != "channels_last"):
                    raise ValueError(
                        f"expected data_format to be 'channels_first' or 'channels_last'"
                    )
                channel_axis = 1 if data_format == "channels_first" else x0.ndim - 1
            elif not 0 <= channel_axis < x0.ndim:
                raise ValueError(
                    f"expected channel_axis to be in [0, {x0.ndim})")

            shape[channel_axis] = 1

        min_, max_ = model.bounds()
        r = max_ - min_

        result = x0
        is_adv = is_adversarial(result)
        best_advs_norms = ep.where(is_adv, ep.zeros(x0, N),
                                   ep.full(x0, N, ep.inf))
        min_probability = ep.zeros(x0, N)
        max_probability = ep.ones(x0, N)
        stepsizes = max_probability / self.steps
        p = stepsizes

        for step in range(self.steps):
            # add salt and pepper
            u = ep.uniform(x0, shape)
            p_ = atleast_kd(p, x0.ndim)
            salt = (u >= 1 - p_ / 2).astype(x0.dtype) * r
            pepper = -(u < p_ / 2).astype(x0.dtype) * r
            x = x0 + salt + pepper
            x = ep.clip(x, min_, max_)

            # check if we found new best adversarials
            norms = flatten(x).square().sum(axis=-1).sqrt()
            closer = norms < best_advs_norms
            is_adv = is_adversarial(
                x)  # TODO: ignore those that are not closer anyway
            is_best_adv = ep.logical_and(is_adv, closer)

            # update results and search space
            result = ep.where(atleast_kd(is_best_adv, x.ndim), x, result)
            best_advs_norms = ep.where(is_best_adv, norms, best_advs_norms)
            min_probability = ep.where(is_best_adv, 0.5 * p, min_probability)
            # we set max_probability a bit higher than p because the relationship
            # between p and norms is not strictly monotonic
            max_probability = ep.where(is_best_adv, ep.minimum(p * 1.2, 1.0),
                                       max_probability)
            remaining = self.steps - step
            stepsizes = ep.where(
                is_best_adv, (max_probability - min_probability) / remaining,
                stepsizes)
            reset = p == max_probability
            p = ep.where(ep.logical_or(is_best_adv, reset), min_probability, p)
            p = ep.minimum(p + stepsizes, max_probability)

        return restore(result)
Ejemplo n.º 18
0
    def __call__(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Misclassification, TargetedMisclassification, T],
    ) -> T:
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion

        N = len(x)

        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
            change_classes_logits = self.confidence
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
            change_classes_logits = -self.confidence
        else:
            raise ValueError("unsupported criterion")

        def is_adversarial(perturbed: ep.Tensor, logits: ep.Tensor) -> ep.Tensor:
            if change_classes_logits != 0:
                logits += ep.onehot_like(logits, classes, value=change_classes_logits)
            return criterion_(perturbed, logits)

        if classes.shape != (N,):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}"
            )

        min_, max_ = model.bounds
        rows = range(N)

        def loss_fun(y_k: ep.Tensor, consts: ep.Tensor) -> Tuple[ep.Tensor, ep.Tensor]:
            assert y_k.shape == x.shape
            assert consts.shape == (N,)

            logits = model(y_k)

            if targeted:
                c_minimize = best_other_classes(logits, classes)
                c_maximize = classes
            else:
                c_minimize = classes
                c_maximize = best_other_classes(logits, classes)

            is_adv_loss = logits[rows, c_minimize] - logits[rows, c_maximize]
            assert is_adv_loss.shape == (N,)

            is_adv_loss = is_adv_loss + self.confidence
            is_adv_loss = ep.maximum(0, is_adv_loss)
            is_adv_loss = is_adv_loss * consts

            squared_norms = flatten(y_k - x).square().sum(axis=-1)
            loss = is_adv_loss.sum() + squared_norms.sum()
            return loss, logits

        loss_aux_and_grad = ep.value_and_grad_fn(x, loss_fun, has_aux=True)

        consts = self.initial_const * ep.ones(x, (N,))
        lower_bounds = ep.zeros(x, (N,))
        upper_bounds = ep.inf * ep.ones(x, (N,))

        best_advs = ep.zeros_like(x)
        best_advs_norms = ep.ones(x, (N,)) * ep.inf

        # the binary search searches for the smallest consts that produce adversarials
        for binary_search_step in range(self.binary_search_steps):
            if (
                binary_search_step == self.binary_search_steps - 1
                and self.binary_search_steps >= 10
            ):
                # in the last iteration, repeat the search once
                consts = ep.minimum(upper_bounds, 1e10)

            # create a new optimizer find the delta that minimizes the loss
            x_k = x
            y_k = x

            found_advs = ep.full(
                x, (N,), value=False
            ).bool()  # found adv with the current consts
            loss_at_previous_check = ep.ones(x, (1,)) * ep.inf

            for iteration in range(self.steps):
                # square-root learning rate decay
                stepsize = self.initial_stepsize * (1.0 - iteration / self.steps) ** 0.5

                loss, logits, gradient = loss_aux_and_grad(y_k, consts)

                x_k_old = x_k
                x_k = project_shrinkage_thresholding(
                    y_k - stepsize * gradient, x, self.regularization, min_, max_
                )
                y_k = x_k + iteration / (iteration + 3.0) * (x_k - x_k_old)

                if self.abort_early and iteration % (math.ceil(self.steps / 10)) == 0:
                    # after each tenth of the iterations, check progress
                    # TODO: loss is a scalar ep tensor. is this the bst way to
                    #  implement the condition?
                    if not ep.all(loss <= 0.9999 * loss_at_previous_check):
                        break  # stop optimization if there has been no progress
                    loss_at_previous_check = loss

                found_advs_iter = is_adversarial(x_k, logits)

                best_advs, best_advs_norms = apply_decision_rule(
                    self.decision_rule,
                    self.regularization,
                    best_advs,
                    best_advs_norms,
                    x_k,
                    x,
                    found_advs_iter,
                )

                found_advs = ep.logical_or(found_advs, found_advs_iter)

            upper_bounds = ep.where(found_advs, consts, upper_bounds)
            lower_bounds = ep.where(found_advs, lower_bounds, consts)

            consts_exponential_search = consts * 10
            consts_binary_search = (lower_bounds + upper_bounds) / 2
            consts = ep.where(
                ep.isinf(upper_bounds), consts_exponential_search, consts_binary_search
            )

        return restore_type(best_advs)
Ejemplo n.º 19
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Misclassification, TargetedMisclassification, T],
        *,
        early_stop: Optional[float] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        x, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion, kwargs

        N = len(x)

        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
        else:
            raise ValueError("unsupported criterion")

        if classes.shape != (N, ):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}")

        stepsize = 1.0
        min_, max_ = model.bounds

        def loss_fn(inputs: ep.Tensor,
                    labels: ep.Tensor) -> Tuple[ep.Tensor, ep.Tensor]:
            logits = model(inputs)

            sign = -1.0 if targeted else 1.0
            loss = sign * ep.crossentropy(logits, labels).sum()

            return loss, logits

        grad_and_logits = ep.value_and_grad_fn(x, loss_fn, has_aux=True)

        delta = ep.zeros_like(x)

        epsilon = self.init_epsilon * ep.ones(x, len(x))
        worst_norm = ep.norms.l2(flatten(ep.maximum(x - min_, max_ - x)), -1)

        best_l2 = worst_norm
        best_delta = delta
        adv_found = ep.zeros(x, len(x)).bool()

        for i in range(self.steps):
            # perform cosine annealing of LR starting from 1.0 to 0.01
            stepsize = (0.01 + (stepsize - 0.01) *
                        (1 + math.cos(math.pi * i / self.steps)) / 2)

            x_adv = x + delta

            _, logits, gradients = grad_and_logits(x_adv, classes)
            gradients = normalize_gradient_l2_norms(gradients)
            is_adversarial = criterion_(x_adv, logits)

            l2 = ep.norms.l2(flatten(delta), axis=-1)
            is_smaller = l2 <= best_l2

            is_both = ep.logical_and(is_adversarial, is_smaller)
            adv_found = ep.logical_or(adv_found, is_adversarial)
            best_l2 = ep.where(is_both, l2, best_l2)

            best_delta = ep.where(atleast_kd(is_both, x.ndim), delta,
                                  best_delta)

            # do step
            delta = delta + stepsize * gradients

            epsilon = epsilon * ep.where(is_adversarial, 1.0 - self.gamma,
                                         1.0 + self.gamma)
            epsilon = ep.minimum(epsilon, worst_norm)

            # project to epsilon ball
            delta *= atleast_kd(epsilon / ep.norms.l2(flatten(delta), -1),
                                x.ndim)

            # clip to valid bounds
            delta = ep.clip(x + delta, *model.bounds) - x

        x_adv = x + best_delta

        return restore_type(x_adv)
Ejemplo n.º 20
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Criterion, T],
        *,
        early_stop: Optional[float] = None,
        starting_points: Optional[T] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        originals, restore_type = ep.astensor_(inputs)
        device = inputs.device
        del inputs, kwargs

        criterion = get_criterion(criterion)
        is_adversarial = get_is_adversarial(criterion, model)

        self.qcount = 0
        self.normHistory = np.zeros((int)(self.steps / 100) + 1)

        if starting_points is None:
            init_attack: MinimizationAttack
            if self.init_attack is None:
                init_attack = LinearSearchBlendedUniformNoiseAttack(steps=50)
                logging.info(
                    f"Neither starting_points nor init_attack given. Falling"
                    f" back to {init_attack!r} for initialization.")
            else:
                init_attack = self.init_attack
            # TODO: use call and support all types of attacks (once early_stop is
            # possible in __call__)
            best_advs = init_attack.run(model,
                                        originals,
                                        criterion,
                                        early_stop=early_stop)
            self.qcount += init_attack.qcount
        else:  #move starting points to boundary
            epsilons = np.linspace(0, 1, num=50 + 1, dtype=np.float32)
            best = ep.ones(originals, (len(originals), ))
            for epsilon in epsilons:
                x = (1 - epsilon) * originals + epsilon * starting_points
                is_adv = is_adversarial(x)
                self.qcount += 1

                epsilon = epsilon.item()

                best = ep.minimum(ep.where(is_adv, epsilon, 1.0), best)
                if (best < 1).all():
                    break

            best = atleast_kd(best, originals.ndim)
            x = (1 - best) * originals + best * starting_points
            best_advs = ep.astensor(x)

        self.normHistory[0:] = ep.norms.l2(flatten(best_advs - originals),
                                           axis=-1).numpy()

        is_adv = is_adversarial(best_advs)
        self.qcount += 1
        if not is_adv.all():
            failed = is_adv.logical_not().float32().sum()
            if starting_points is None:
                raise ValueError(
                    f"init_attack failed for {failed} of {len(is_adv)} inputs")
            else:
                raise ValueError(
                    f"{failed} of {len(is_adv)} starting_points are not adversarial"
                )
        del starting_points

        tb = TensorBoard(logdir=self.tensorboard)

        N = len(originals)
        ndim = originals.ndim
        spherical_steps = ep.ones(originals, N) * self.spherical_step
        source_steps = ep.ones(originals, N) * self.source_step

        tb.scalar("batchsize", N, 0)

        # create two queues for each sample to track success rates
        # (used to update the hyper parameters)
        stats_spherical_adversarial = ArrayQueue(maxlen=100, N=N)
        stats_step_adversarial = ArrayQueue(maxlen=30, N=N)

        bounds = model.bounds

        for step in range(1, self.steps + 1):
            converged = source_steps < self.source_step_convergance
            if converged.all():
                break  # pragma: no cover
            converged = atleast_kd(converged, ndim)

            # TODO: performance: ignore those that have converged
            # (we could select the non-converged ones, but we currently
            # cannot easily invert this in the end using EagerPy)

            unnormalized_source_directions = originals - best_advs
            source_norms = ep.norms.l2(flatten(unnormalized_source_directions),
                                       axis=-1)
            source_directions = unnormalized_source_directions / atleast_kd(
                source_norms, ndim)

            # only check spherical candidates every k steps
            check_spherical_and_update_stats = step % self.update_stats_every_k == 0

            candidates, spherical_candidates = draw_proposals(
                bounds, originals, best_advs, unnormalized_source_directions,
                source_directions, source_norms, spherical_steps, source_steps,
                self.surrogate_models, self.ODS, device)
            candidates.dtype == originals.dtype
            spherical_candidates.dtype == spherical_candidates.dtype

            is_adv = is_adversarial(candidates)

            self.qcount += 1
            if self.qcount % 100 == 0:
                self.normHistory[(int)(self.qcount / 100):] = ep.norms.l2(
                    flatten(best_advs - originals), axis=-1).numpy()
                if self.qcount >= self.steps:
                    break

            spherical_is_adv: Optional[ep.Tensor]
            if check_spherical_and_update_stats:
                spherical_is_adv = is_adversarial(spherical_candidates)
                self.qcount += 1
                if self.qcount % 100 == 0:
                    self.normHistory[(int)(self.qcount / 100):] = ep.norms.l2(
                        flatten(best_advs - originals), axis=-1).numpy()
                    if self.qcount >= self.steps:
                        break

                stats_spherical_adversarial.append(spherical_is_adv)
                # TODO: algorithm: the original implementation ignores those samples
                # for which spherical is not adversarial and continues with the
                # next iteration -> we estimate different probabilities (conditional vs. unconditional)
                # TODO: thoughts: should we always track this because we compute it anyway
                stats_step_adversarial.append(is_adv)
            else:
                spherical_is_adv = None

            # in theory, we are closer per construction
            # but limited numerical precision might break this
            distances = ep.norms.l2(flatten(originals - candidates), axis=-1)
            closer = distances < source_norms
            is_best_adv = ep.logical_and(is_adv, closer)
            is_best_adv = atleast_kd(is_best_adv, ndim)

            cond = converged.logical_not().logical_and(is_best_adv)
            best_advs = ep.where(cond, candidates, best_advs)

            tb.probability("converged", converged, step)
            tb.scalar("updated_stats", check_spherical_and_update_stats, step)
            tb.histogram("norms", source_norms, step)
            tb.probability("is_adv", is_adv, step)
            if spherical_is_adv is not None:
                tb.probability("spherical_is_adv", spherical_is_adv, step)
            tb.histogram("candidates/distances", distances, step)
            tb.probability("candidates/closer", closer, step)
            tb.probability("candidates/is_best_adv", is_best_adv, step)
            tb.probability("new_best_adv_including_converged", is_best_adv,
                           step)
            tb.probability("new_best_adv", cond, step)

            if check_spherical_and_update_stats:
                full = stats_spherical_adversarial.isfull()
                tb.probability("spherical_stats/full", full, step)
                if full.any():
                    probs = stats_spherical_adversarial.mean()
                    cond1 = ep.logical_and(probs > 0.5, full)
                    spherical_steps = ep.where(
                        cond1, spherical_steps * self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.2, full)
                    spherical_steps = ep.where(
                        cond2, spherical_steps / self.step_adaptation,
                        spherical_steps)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_spherical_adversarial.clear(
                        ep.logical_or(cond1, cond2))
                    tb.conditional_mean(
                        "spherical_stats/isfull/success_rate/mean", probs,
                        full, step)
                    tb.probability_ratio("spherical_stats/isfull/too_linear",
                                         cond1, full, step)
                    tb.probability_ratio(
                        "spherical_stats/isfull/too_nonlinear", cond2, full,
                        step)

                full = stats_step_adversarial.isfull()
                tb.probability("step_stats/full", full, step)
                if full.any():
                    probs = stats_step_adversarial.mean()
                    # TODO: algorithm: changed the two values because we are currently tracking p(source_step_sucess)
                    # instead of p(source_step_success | spherical_step_sucess) that was tracked before
                    cond1 = ep.logical_and(probs > 0.25, full)
                    source_steps = ep.where(
                        cond1, source_steps * self.step_adaptation,
                        source_steps)
                    cond2 = ep.logical_and(probs < 0.1, full)
                    source_steps = ep.where(
                        cond2, source_steps / self.step_adaptation,
                        source_steps)
                    stats_step_adversarial.clear(ep.logical_or(cond1, cond2))
                    tb.conditional_mean("step_stats/isfull/success_rate/mean",
                                        probs, full, step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_high", cond1, full,
                        step)
                    tb.probability_ratio(
                        "step_stats/isfull/success_rate_too_low", cond2, full,
                        step)

            tb.histogram("spherical_step", spherical_steps, step)
            tb.histogram("source_step", source_steps, step)
        tb.close()
        return restore_type(best_advs)
Ejemplo n.º 21
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Misclassification,
        *,
        early_stop: Optional[float] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        x0, restore_type = ep.astensor_(inputs)
        criterion_ = get_criterion(criterion)
        del inputs, criterion, kwargs

        is_adversarial = get_is_adversarial(criterion_, model)

        N = len(x0)
        shape = list(x0.shape)

        if self.across_channels and x0.ndim > 2:
            if self.channel_axis is None:
                channel_axis = get_channel_axis(model, x0.ndim)
            else:
                channel_axis = self.channel_axis % x0.ndim
            if channel_axis is not None:
                shape[channel_axis] = 1

        min_, max_ = model.bounds
        r = max_ - min_

        result = x0
        is_adv = is_adversarial(result)
        best_advs_norms = ep.where(is_adv, ep.zeros(x0, N),
                                   ep.full(x0, N, ep.inf))
        min_probability = ep.zeros(x0, N)
        max_probability = ep.ones(x0, N)
        stepsizes = max_probability / self.steps
        p = stepsizes

        for step in range(self.steps):
            # add salt and pepper
            u = ep.uniform(x0, tuple(shape))
            p_ = atleast_kd(p, x0.ndim)
            salt = (u >= 1 - p_ / 2).astype(x0.dtype) * r
            pepper = -(u < p_ / 2).astype(x0.dtype) * r
            x = x0 + salt + pepper
            x = ep.clip(x, min_, max_)

            # check if we found new best adversarials
            norms = flatten(x).norms.l2(axis=-1)
            closer = norms < best_advs_norms
            is_adv = is_adversarial(
                x)  # TODO: ignore those that are not closer anyway
            is_best_adv = ep.logical_and(is_adv, closer)

            # update results and search space
            result = ep.where(atleast_kd(is_best_adv, x.ndim), x, result)
            best_advs_norms = ep.where(is_best_adv, norms, best_advs_norms)
            min_probability = ep.where(is_best_adv, 0.5 * p, min_probability)
            # we set max_probability a bit higher than p because the relationship
            # between p and norms is not strictly monotonic
            max_probability = ep.where(is_best_adv, ep.minimum(p * 1.2, 1.0),
                                       max_probability)
            remaining = self.steps - step
            stepsizes = ep.where(
                is_best_adv, (max_probability - min_probability) / remaining,
                stepsizes)
            reset = p == max_probability
            p = ep.where(ep.logical_or(is_best_adv, reset), min_probability, p)
            p = ep.minimum(p + stepsizes, max_probability)

        return restore_type(result)
Ejemplo n.º 22
0
 def project(self, x: ep.Tensor, x0: ep.Tensor,
             epsilon: ep.Tensor) -> ep.Tensor:
     clipped = ep.maximum(flatten(x - x0).T, -epsilon)
     clipped = ep.minimum(clipped, epsilon).T
     return x0 + clipped.reshape(x0.shape)
Ejemplo n.º 23
0
    def run(
        self,
        model: Model,
        inputs: T,
        criterion: Union[Misclassification, TargetedMisclassification, T],
        *,
        starting_points: Optional[ep.Tensor] = None,
        early_stop: Optional[float] = None,
        **kwargs: Any,
    ) -> T:
        raise_if_kwargs(kwargs)
        criterion_ = get_criterion(criterion)

        if isinstance(criterion_, Misclassification):
            targeted = False
            classes = criterion_.labels
        elif isinstance(criterion_, TargetedMisclassification):
            targeted = True
            classes = criterion_.target_classes
        else:
            raise ValueError("unsupported criterion")

        def loss_fn(
            inputs: ep.Tensor, labels: ep.Tensor
        ) -> Tuple[ep.Tensor, Tuple[ep.Tensor, ep.Tensor]]:

            logits = model(inputs)

            if targeted:
                c_minimize = best_other_classes(logits, labels)
                c_maximize = labels  # target_classes
            else:
                c_minimize = labels  # labels
                c_maximize = best_other_classes(logits, labels)

            loss = logits[rows, c_minimize] - logits[rows, c_maximize]

            return -loss.sum(), (logits, loss)

        x, restore_type = ep.astensor_(inputs)
        del inputs, criterion, kwargs
        N = len(x)

        # start from initialization points/attack
        if starting_points is not None:
            x1 = starting_points
        else:
            if self.init_attack is not None:
                x1 = self.init_attack.run(model, x, criterion_)
            else:
                x1 = None

        # if initial points or initialization attacks are provided,
        #   search for the boundary
        if x1 is not None:
            is_adv = get_is_adversarial(criterion_, model)
            assert is_adv(x1).all()
            lower_bound = ep.zeros(x, shape=(N, ))
            upper_bound = ep.ones(x, shape=(N, ))
            for _ in range(self.binary_search_steps):
                epsilons = (lower_bound + upper_bound) / 2
                mid_points = self.mid_points(x, x1, epsilons, model.bounds)
                is_advs = is_adv(mid_points)
                lower_bound = ep.where(is_advs, lower_bound, epsilons)
                upper_bound = ep.where(is_advs, epsilons, upper_bound)
            starting_points = self.mid_points(x, x1, upper_bound, model.bounds)
            delta = starting_points - x
        else:
            # start from x0
            delta = ep.zeros_like(x)

        if classes.shape != (N, ):
            name = "target_classes" if targeted else "labels"
            raise ValueError(
                f"expected {name} to have shape ({N},), got {classes.shape}")

        min_, max_ = model.bounds
        rows = range(N)
        grad_and_logits = ep.value_and_grad_fn(x, loss_fn, has_aux=True)

        if self.p != 0:
            epsilon = ep.inf * ep.ones(x, len(x))
        else:
            epsilon = ep.ones(x, len(x)) if x1 is None \
                else ep.norms.l0(flatten(delta), axis=-1)
        if self.p != 0:
            worst_norm = ep.norms.lp(flatten(ep.maximum(x - min_, max_ - x)),
                                     p=self.p,
                                     axis=-1)
        else:
            worst_norm = flatten(ep.ones_like(x)).bool().sum(axis=1).float32()

        best_lp = worst_norm
        best_delta = delta
        adv_found = ep.zeros(x, len(x)).bool()

        for i in range(self.steps):
            # perform cosine annealing of learning rates
            stepsize = (self.min_stepsize +
                        (self.max_stepsize - self.min_stepsize) *
                        (1 + math.cos(math.pi * i / self.steps)) / 2)
            gamma = (0.001 + (self.gamma - 0.001) *
                     (1 + math.cos(math.pi * (i / self.steps))) / 2)

            x_adv = x + delta

            loss, (logits,
                   loss_batch), gradients = grad_and_logits(x_adv, classes)
            is_adversarial = criterion_(x_adv, logits)

            lp = ep.norms.lp(flatten(delta), p=self.p, axis=-1)
            is_smaller = lp <= best_lp
            is_both = ep.logical_and(is_adversarial, is_smaller)
            adv_found = ep.logical_or(adv_found, is_adversarial)
            best_lp = ep.where(is_both, lp, best_lp)
            best_delta = ep.where(atleast_kd(is_both, x.ndim), delta,
                                  best_delta)

            # update epsilon
            if self.p != 0:
                distance_to_boundary = abs(loss_batch) / ep.norms.lp(
                    flatten(gradients), p=self.dual, axis=-1)
                epsilon = ep.where(
                    is_adversarial,
                    ep.minimum(
                        epsilon * (1 - gamma),
                        ep.norms.lp(flatten(best_delta), p=self.p, axis=-1)),
                    ep.where(
                        adv_found, epsilon * (1 + gamma),
                        ep.norms.lp(flatten(delta), p=self.p, axis=-1) +
                        distance_to_boundary))
            else:
                epsilon = ep.where(
                    is_adversarial,
                    ep.minimum(
                        ep.minimum(epsilon - 1,
                                   (epsilon * (1 - gamma)).astype(int).astype(
                                       epsilon.dtype)),
                        ep.norms.lp(flatten(best_delta), p=self.p, axis=-1)),
                    ep.maximum(epsilon + 1,
                               (epsilon * (1 + gamma)).astype(int).astype(
                                   epsilon.dtype)))
                epsilon = ep.maximum(0, epsilon).astype(epsilon.dtype)

            # clip epsilon
            epsilon = ep.minimum(epsilon, worst_norm)

            # computes normalized gradient update
            grad_ = self.normalize(gradients, x=x,
                                   bounds=model.bounds) * stepsize

            # do step
            delta = delta + grad_

            # project according to the given norm
            delta = self.project(x=x + delta, x0=x, epsilon=epsilon) - x

            # clip to valid bounds
            delta = ep.clip(x + delta, *model.bounds) - x

        x_adv = x + best_delta
        return restore_type(x_adv)
Ejemplo n.º 24
0
    def __call__(self, inputs, labels, *, criterion, steps=1000):
        originals = ep.astensor(inputs)
        labels = ep.astensor(labels)

        def is_adversarial(p: ep.Tensor) -> ep.Tensor:
            """For each input in x, returns true if it is an adversarial for
            the given model and criterion"""
            logits = ep.astensor(self.model.forward(p.tensor))
            return criterion(originals, labels, p, logits)

        x0 = ep.astensor(inputs)

        N = len(x0)
        shape = list(x0.shape)
        if self.channel_axis is not None:
            shape[self.channel_axis] = 1

        min_, max_ = self.model.bounds()
        r = max_ - min_

        result = x0
        is_adv = is_adversarial(result)
        best_advs_norms = ep.where(is_adv, ep.zeros(x0, N), ep.full(x0, N, ep.inf))
        min_probability = ep.zeros(x0, N)
        max_probability = ep.ones(x0, N)
        stepsizes = max_probability / steps
        p = stepsizes

        for step in range(steps):
            # add salt and pepper
            u = ep.uniform(x0, shape)
            p_ = atleast_kd(p, x0.ndim)
            salt = (u >= 1 - p_ / 2).astype(x0.dtype) * r
            pepper = -(u < p_ / 2).astype(x0.dtype) * r
            x = x0 + salt + pepper
            x = ep.clip(x, min_, max_)

            # check if we found new best adversarials
            norms = flatten(x).square().sum(axis=-1).sqrt()
            closer = norms < best_advs_norms
            is_adv = is_adversarial(x)  # TODO: ignore those that are not closer anyway
            is_best_adv = ep.logical_and(is_adv, closer)

            # update results and search space
            result = ep.where(atleast_kd(is_best_adv, x.ndim), x, result)
            best_advs_norms = ep.where(is_best_adv, norms, best_advs_norms)
            min_probability = ep.where(is_best_adv, 0.5 * p, min_probability)
            # we set max_probability a bit higher than p because the relationship
            # between p and norms is not strictly monotonic
            max_probability = ep.where(
                is_best_adv, ep.minimum(p * 1.2, 1.0), max_probability
            )
            remaining = steps - step
            stepsizes = ep.where(
                is_best_adv, (max_probability - min_probability) / remaining, stepsizes
            )
            reset = p == max_probability
            p = ep.where(ep.logical_or(is_best_adv, reset), min_probability, p)
            p = ep.minimum(p + stepsizes, max_probability)

        return result.tensor