Ejemplo n.º 1
0
def getEamValues(p):
    mol = read('res_POSCAR_1.0.traj')
    calc = get_calc(p)
    mol.set_calculator(calc)
    forces = mol.get_forces()
    energy = [mol.get_potential_energy()]

    eps = 0.02
    energies = []
    lattice = []
    initialLattice = mol.get_cell()[0, 0]
    for scale in np.linspace(1 - eps, 1 + eps, 3):
        mol.set_cell(3 * [initialLattice * scale], scale_atoms=True)
        energies = energies + [mol.get_potential_energy()]
        lattice = lattice + [[initialLattice * scale / 3.0]]

    lattice = np.array(lattice)
    energies = np.array(energies)

    functions = np.array([lattice**0, lattice, lattice**2])
    polyfit = np.linalg.lstsq(functions.T[0], energies)[0]
    derivative = [polyfit[1], 2 * polyfit[2]]
    a0 = np.linalg.solve([derivative[1]], [-derivative[0]])
    forces = forces.reshape(1, forces.size)
    print(a0)
    print(energy)

    ret = np.concatenate((a0, energy, forces), 1)

    return (ret)
Ejemplo n.º 2
0
def calc_lattice_parameter_al(al_bulk, A, lmbd, D, mu2):
    q = 0.03
    n_points = 14
    calc = get_calc((A, lmbd, D, mu2))
    # # # Find lattice constant with lowest energy # # #
    cell_0 = al_bulk.cell  # Unit cell object of the Al bulk
    al_bulk.set_calculator(calc)
    energies = []
    volumes = []

    for eps in np.linspace(-q, q, n_points):

        al_bulk.cell = (1 + eps) * cell_0  # Adjust lattice constant of unit cell

        # Calculate the potential energy for the Al bulk
        energies.append(al_bulk.get_potential_energy())
        volumes.append(al_bulk.get_volume())

    # Plot energies as a function of unit cell volume (directly related to latt. const.)
    eos = EquationOfState(volumes, energies)
    v0, E, B = eos.fit()
    # Latt. const. acc. to ASE doc., but why is this correct?
    a_calc = (4 * v0)**(1 / 3.0)
    al_bulk.cell = cell_0

    print('Lattice_parameter:', a_calc)
    return a_calc
Ejemplo n.º 3
0
def calc_lattice_parameter(al_bulk_ASE, A, lmbd, D, mu2):
    q = 0.2
    n_points = 15
    calc = get_calc((A, lmbd, D, mu2))

    # # # Find lattice constant with lowest energy # # #
    cell_0 = al_bulk_ASE.get_cell()  # Unit cell object of the Al bulk
    al_bulk_ASE.set_calculator(calc)
    energies = []
    volumes = []

    for eps in np.linspace(-q, q, n_points):

        al_bulk_ASE.set_cell(
            (1 + eps) * cell_0)  # Adjust lattice constant of unit cell

        # Calculate the potential energy for the Al bulk
        energies.append(al_bulk_ASE.get_potential_energy())
        volumes.append(al_bulk_ASE.get_volume())

    #plt.plot(np.asarray(volumes)**(1 / 3), energies)
    # plt.show()
    # Plot energies as a function of unit cell volume (directly related to latt. const.)
    eos = EquationOfState(volumes, energies)
    v0, E, B = eos.fit()
    # Latt. const. acc. to ASE doc., but why is this correct?
    a_calc = v0**(1 / 3.0)
    print('a=' + str(a_calc))

    al_bulk_ASE.set_cell(cell_0)

    return a_calc
Ejemplo n.º 4
0
def calc_lattice_parameter_al(atom_set, A, lmbd, D, mu2):
    global n_sets, cells
    q = 0.2
    n_points = 10
    lattice_param_set = np.zeros(n_sets)
    calc = get_calc((A, lmbd, D, mu2))

    for index, atoms in enumerate(atom_set):
        # # # Find lattice constant with lowest energy # # #
        cell_0 = atoms.cells[index]  # Unit cell object of the Al bulk
        atoms.set_calculator(calc)
        energies = []
        volumes = []
        inval = np.linspace(-q, q, n_points)
        for eps in inval:

            atoms.cell = (1 + eps) * cell_0  # Adjust lattice constant of unit cell

            # Calculate the potential energy for the Al bulk
            energies.append(atoms.get_potential_energy())
            volumes.append(atoms.get_volume())

        # Plot energies as a function of unit cell volume (directly related to latt. const.)
        eos = EquationOfState(volumes, energies)
        v0, E, B = eos.fit()
        # Latt. const. acc. to ASE doc., but why is this correct?
        a_calc = v0**(1 / 3.0)

        n_min = np.argmin(energies)
        atoms.cell = (1 + inval[n_min]) * cell_0
        lattice_param_set[index] = a_calc
    return lattice_param_set
Ejemplo n.º 5
0
def calc_forces_al(atoms_set, A, lmbd, D, mu2):
    forces = []
    calc = get_calc((A, lmbd, D, mu2))
    for atoms in atoms_set:
        atoms.set_calculator(calc)
        forces_tmp = atoms.get_forces()
        forces = np.hstack([forces, forces_tmp[:, 0], forces_tmp[:, 1], forces_tmp[:, 2]])
    return forces
Ejemplo n.º 6
0
def calc_cohesive_energy_al(atom_set, A, lmbd, D, mu2):
    global n_sets
    energy_set = np.zeros(n_sets)
    calc = get_calc((A, lmbd, D, mu2))
    for index, atoms in enumerate(atom_set):
        atoms.set_calculator(calc)
        energy_set[index] = atoms.get_potential_energy()
    return energy_set
Ejemplo n.º 7
0
def calc_forces(data_input_forces, A, lmbd, D, mu2):
    calc = get_calc((A, lmbd, D, mu2))
    forces = []
    for atoms in data_input_forces:
        atoms.set_calculator(calc)
        forces_mat = atoms.get_forces()
        forces = np.hstack(
            [forces, forces_mat[:, 0], forces_mat[:, 1], forces_mat[:, 2]])
    return forces
Ejemplo n.º 8
0
def calc_lattice_parameter(al_bulk_ASE, A, lmbd, D, mu2):
    calc = get_calc((A, lmbd, D, mu2))
    eps = 0.001
    energies = []
    volumes = []
    al_bulk_ASE.set_calculator(calc)

    # # # Find lattice constant with lowest energy # # #
    cell_0 = al_bulk_ASE.get_cell()  # Unit cell object of the Al bulk

    # DIRECTION
    cell_orig = cell_0

    E1 = al_bulk_ASE.get_potential_energy()
    al_bulk_ASE.set_cell((1 + eps) * cell_0)
    E2 = al_bulk_ASE.get_potential_energy()

    direction = (E2 - E1) / abs((E2 - E1))
    print('Direction', direction)

    # Go one step in the right
    al_bulk_ASE.set_cell(cell_orig)
    energies.append(al_bulk_ASE.get_potential_energy())
    volumes.append(al_bulk_ASE.get_volume())

    cell_0 = al_bulk_ASE.get_cell()

    al_bulk_ASE.set_cell(
        (1 - direction * eps) * cell_0)  # Adjust lattice constant of unit cell

    energies.append(al_bulk_ASE.get_potential_energy())
    volumes.append(al_bulk_ASE.get_volume())

    # Go two steps back
    while (energies[-1] - energies[-2]) < 0:
        cell_0 = al_bulk_ASE.get_cell()
        # Adjust lattice constant of unit cell
        al_bulk_ASE.set_cell((1 - direction * eps) * cell_0)

        # Calculate the potential energy for the Al bulk
        energies.append(al_bulk_ASE.get_potential_energy())
        volumes.append(al_bulk_ASE.get_volume())

    cell_0 = al_bulk_ASE.get_cell()
    al_bulk_ASE.set_cell(
        (1 - direction * eps) * cell_0)  # Adjust lattice constant of unit cell

    # Calculate the potential energy for the Al bulk
    energies.append(al_bulk_ASE.get_potential_energy())
    volumes.append(al_bulk_ASE.get_volume())
    # plt.plot((4 * np.asarray(volumes))**(1 / 3), energies)
    # plt.show()
    # Plot energies as a function of unit cell volume (directly related to latt. const.)
    eos = EquationOfState(volumes, energies)
    v0, E, B = eos.fit()
    # Latt. const. acc. to ASE doc., but why is this correct?
    print('asdasdasdasdasd: ', E)
    a_calc = (4 * v0)**(1 / 3.0)
    # a_calc = v0**(1 / 3.0)
    print('a=' + str(a_calc))

    al_bulk_ASE.set_cell(cell_0)

    return a_calc
Ejemplo n.º 9
0
def calc_cohesive_energy(al_bulk_ASE, A, lmbd, D, mu2):
    calc = get_calc((A, lmbd, D, mu2))
    al_bulk_ASE.set_calculator(calc)
    energy = al_bulk_ASE.get_potential_energy()
    print('Cohesive energy: ', energy)
    return energy
Ejemplo n.º 10
0
def calc_cohesive_energy_al(al_bulk, A, lmbd, D, mu2):
    calc = get_calc((A, lmbd, D, mu2))
    al_bulk.set_calculator(calc)
    energy = al_bulk.get_potential_energy()
    return energy
Ejemplo n.º 11
0
A = 2011
lmbda = 3.21
D = 5.29
mu = 0.93/2

p = (A, lmbda, D, 2*mu)

dE1m2 = []
dE4 = []
dE1p2 = []
e = []
for deformation in (0.2,0.1,0.001):
  mol = read('res_POSCAR_1.0.traj')
#  mol = bulk('Al','fcc',a = latticeParam)

  calc = get_calc(p)
  mol.set_calculator(calc)

  preEnergy = mol.get_potential_energy()
  preVolume = mol.get_volume()

  strain_change1m2 = np.array(((deformation, 0, 0),(0,-deformation, 0),(0,0,deformation**2/(1-deformation**2))))
  strain_change4 = np.array(((0,0.5*deformation, 0),(0.5*deformation,0, 0),(0,0,deformation**2/(4-deformation**2))))
  strain_change1p2 = np.array(((deformation, 0, 0),(0,deformation, 0),(0,0,0)))

  strain1m2 = np.identity(3) + strain_change1m2
  strain4 = np.identity(3) + strain_change4
  strain1p2 = np.identity(3) + strain_change1p2
  
  preCell = mol.get_cell()
  
Ejemplo n.º 12
0
def calc_cohesive_energy(al_bulk_ASE, A, lmbd, D, mu2):
    calc = get_calc((A, lmbd, D, mu2))
    al_bulk_ASE.set_calculator(calc)
    return al_bulk_ASE.get_potential_energy()
Ejemplo n.º 13
0
def main():
    ''' Read in parameters for EAM calc '''
    with open('HA4/results/fit_potential_output_full.txt', 'r') as textfile:
        line = next(textfile)
        line = line.split(',')

        A = float(line[0])
        lmbd = float(line[1])
        D = float(line[2])
        mu2 = float(line[3])

    path_BCC = 'HA4/downloads/Al-EV-curves/BCC.dat'
    a0_BCC, V_BCC, E_BCC, scale_factors = read_data(path_BCC)

    path_DI = 'HA4/downloads/Al-EV-curves/DIAMOND.dat'
    a0_DI, V_DI, E_DI, scale_factors = read_data(path_DI)

    path_FCC = 'HA4/downloads/Al-EV-curves/FCC.dat'
    a0_FCC, V_FCC, E_FCC, scale_factors = read_data(path_FCC)
    a0_FCC_experimental = 4.032
    E0_FCC_experimental = -3.36
    path_SC = 'HA4/downloads/Al-EV-curves/SC.dat'
    a0_SC, V_SC, E_SC, scale_factors = read_data(path_SC)

    al_bulk_BCC = bulk('Al', 'bcc', a=a0_BCC)
    al_bulk_DI = bulk('Al', 'diamond', a=a0_DI)
    al_bulk_FCC = bulk('Al', 'fcc', a=a0_FCC)
    al_bulk_SC = bulk('Al', 'sc', a=a0_SC)

    calc = get_calc((A, lmbd, D, mu2))

    al_bulk_BCC.set_calculator(calc)
    al_bulk_DI.set_calculator(calc)
    al_bulk_FCC.set_calculator(calc)
    al_bulk_SC.set_calculator(calc)

    V_BCC_sim, V_DI_sim, V_FCC_sim, V_SC_sim = [], [], [], []
    E_BCC_sim, E_DI_sim, E_FCC_sim, E_SC_sim = [], [], [], []

    for scale_factor in scale_factors:
        cell_0 = al_bulk_BCC.get_cell()
        al_bulk_BCC.set_cell(cell_0 * scale_factor)
        E_BCC_sim.append(al_bulk_BCC.get_potential_energy())
        V_BCC_sim.append(2 * al_bulk_BCC.get_volume())
        al_bulk_BCC.set_cell(cell_0)

        cell_0 = al_bulk_DI.get_cell()
        al_bulk_DI.set_cell(cell_0 * scale_factor)
        E_DI_sim.append(al_bulk_DI.get_potential_energy())
        V_DI_sim.append(4 * al_bulk_DI.get_volume())
        al_bulk_DI.set_cell(cell_0)

        cell_0 = al_bulk_FCC.get_cell()
        al_bulk_FCC.set_cell(cell_0 * scale_factor)
        E_FCC_sim.append(al_bulk_FCC.get_potential_energy())
        V_FCC_sim.append(4 * al_bulk_FCC.get_volume())
        al_bulk_FCC.set_cell(cell_0)

        cell_0 = al_bulk_SC.get_cell()
        al_bulk_SC.set_cell(cell_0 * scale_factor)
        E_SC_sim.append(al_bulk_SC.get_potential_energy())
        V_SC_sim.append(1 * al_bulk_SC.get_volume())
        al_bulk_SC.set_cell(cell_0)

    fig = plt.figure(1, figsize=(7.1, 7.1))
    ax_BCC = fig.add_subplot(221)
    ax_BCC.plot(V_BCC, E_BCC, label='DFT', color='blue')
    ax_BCC.plot(V_BCC_sim, E_BCC_sim, label='EAM', color='red')
    ax_BCC.set_title('BCC unit cell')
    ax_BCC.minorticks_on()
    ax_BCC.grid(True, which='minor', linestyle='--')
    ax_BCC.grid(True, which='major', linestyle='-')
    ax_BCC.set_xlim(V_BCC[0], V_BCC[-1])
    ax_BCC.legend()

    ax_DI = fig.add_subplot(222)
    ax_DI.plot(V_DI, E_DI, label='DFT', color='blue')
    ax_DI.plot(V_DI_sim, E_DI_sim, label='EAM', color='red')
    ax_DI.set_title('Diamond unit cell')
    ax_DI.minorticks_on()
    ax_DI.grid(True, which='minor', linestyle='--')
    ax_DI.grid(True, which='major', linestyle='-')
    ax_DI.set_xlim(V_DI[0], V_DI[-1])
    ax_DI.legend()

    ax_FCC = fig.add_subplot(223)
    ax_FCC.plot(V_FCC, E_FCC, label='DFT', color='blue')
    ax_FCC.plot(V_FCC_sim, E_FCC_sim, label='EAM', color='red')
    ax_FCC.plot(a0_FCC_experimental**3,
                E0_FCC_experimental,
                marker='*',
                color='black')
    ax_FCC.set_title('FCC unit cell')
    ax_FCC.minorticks_on()
    ax_FCC.grid(True, which='minor', linestyle='--')
    ax_FCC.grid(True, which='major', linestyle='-')
    ax_FCC.set_xlim(V_FCC[0], V_FCC[-1])
    ax_FCC.legend()

    ax_SC = fig.add_subplot(224)
    ax_SC.plot(V_SC, E_SC, label='DFT', color='blue')
    ax_SC.plot(V_SC_sim, E_SC_sim, label='EAM', color='red')
    ax_SC.set_title('SC unit cell')
    ax_SC.minorticks_on()
    ax_SC.grid(True, which='minor', linestyle='--')
    ax_SC.grid(True, which='major', linestyle='-')
    ax_SC.set_xlim(V_SC[0], V_SC[-1])
    ax_SC.legend()

    fig.subplots_adjust(left=None,
                        bottom=None,
                        right=None,
                        top=None,
                        wspace=None,
                        hspace=0.25)
    fig.text(0.5, 0.03, 'Volume [Å^3]', ha='center', fontsize=16)
    fig.text(0.03,
             0.5,
             'Energy [eV]',
             va='center',
             rotation='vertical',
             fontsize=16)

    fig.savefig("HA4/results/EV_curves.png", bbox_inches='tight')

    with open('HA4/results/EV_FCC.txt', 'w') as textfile:
        text = 'Volume, Enegy DFT, Energy EAM ' + '\n'
        for i in range(len(V_FCC)):
            text = text + str(V_FCC[i]) + ',' + str(E_FCC[i]) + ',' + str(
                E_FCC_sim[i]) + '\n'
        text = text[:-1]
        textfile.write(text)

    plt.show()
Ejemplo n.º 14
0
def main():
    ''' Read in parameters for EAM calc '''
    with open('HA4/results/fit_potential_output_full.txt', 'r') as textfile:
        line = next(textfile)
        line = line.split(',')
        A = float(line[0])
        lmbd = float(line[1])
        D = float(line[2])
        mu2 = float(line[3])

    # with open('HAlea')
    # ''' Optimization parameters '''
    # A = 1000  # eV
    # lmbd = 3  # Å^(-1)
    # D = 5  # Å
    # mu2 = 1  # 2  # Å^(-1)
    # param_0 = [A, lmbd, D, mu2]
    ''' Strains and stuff '''
    eV_to_J = 1.60217662 * 10**(-19)
    angstrom_to_meter = 1e-10
    calc = get_calc((A, lmbd, D, mu2))
    # calc = EMT()
    e1 = 0.01
    e6 = 0.01
    energies = []
    C11_vec = []
    C12_vec = []
    B_vec = []

    x = np.linspace(0, 0.5, 100)
    for i in x:
        e1 = i
        e6 = i

        # C11-C12
        al_bulk = bulk('Al', 'fcc', a=4.032, cubic=True)
        al_bulk.set_calculator(calc)
        ep_mat_1 = np.array([[e1, 0, 0], [0, -e1, 0],
                             [0, 0, e1**2 / (1 - e1**2)]])
        energies.append(al_bulk.get_potential_energy())
        cell_0 = al_bulk.get_cell()
        # al_bulk.set_cell(np.dot((np.eye(3) + ep_mat_1), np.transpose(cell_0)))
        al_bulk.set_cell(np.dot((np.eye(3) + ep_mat_1),
                                cell_0))  # Yields same result
        energies.append(al_bulk.get_potential_energy())

        # print(cell_0 / al_bulk.get_cell())
        # print(cell_0)
        # print(al_bulk.get_cell())

        V = al_bulk.get_volume()  #4 * al_bulk.get_volume()
        delta_E = energies[-1] - energies[0]
        C11_minus_C12 = delta_E / (V * e1**2)
        # print('Hola', C11_minus_C12 * eV_to_J / (angstrom_to_meter**3 * 1e9))

        # C11+C12
        al_bulk = bulk('Al', 'fcc', a=4.032, cubic=True)
        al_bulk.set_calculator(calc)

        e2 = e1
        ep_mat_12 = np.array([[e1, 0, 0], [0, e2, 0], [0, 0, 0]])

        energies.append(al_bulk.get_potential_energy())

        V = al_bulk.get_volume(
        )  #4 * al_bulk.get_volume()  # Equilibrium cell volume
        cell_0 = al_bulk.get_cell()
        al_bulk.set_cell(np.dot((np.eye(3) + ep_mat_12), cell_0))
        energies.append(al_bulk.get_potential_energy())
        delta_E = energies[-1] - energies[0]
        C11_plus_C12 = delta_E / (V * e1**2)
        # print(C11_plus_C12)

        # C11 and C12
        C11 = (C11_minus_C12 + C11_plus_C12) / 2
        C12 = C11_plus_C12 - C11

        C11_vec.append(C11 * eV_to_J / (angstrom_to_meter**3 * 1e9))
        C12_vec.append(C12 * eV_to_J / (angstrom_to_meter**3 * 1e9))

        B_vec.append(
            ((C11 + 2 * C12) / 3) * eV_to_J / (angstrom_to_meter**3 * 1e9))

    plt.figure()
    plt.plot(x, C11_vec)
    plt.plot(x, C12_vec)
    plt.plot(x, B_vec)
    plt.set_xlabel(
        r'Displacement factor $\varepsilon_1 = \varepsilon_2 \varepsilon_6 $')
    plt.set_ylabel('Elastic constants/Bulk modulus [GPa]')
    plt.show()

    # C44
    al_bulk = bulk('Al', 'fcc', a=4.032, cubic=True)
    al_bulk.set_calculator(calc)
    cell_0 = al_bulk.get_cell()

    ep_mat_6 = np.array([[0, 0.5 * e6, 0], [0.5 * e6, 0, 0],
                         [0, 0, e6**2 / (4 - e6**2)]])

    al_bulk.set_cell(np.dot((np.eye(3) + ep_mat_6), cell_0))
    energies.append(al_bulk.get_potential_energy())
    V = 4 * al_bulk.get_volume()
    delta_E = energies[-1] - energies[0]
    C44 = 2 * delta_E / (V * e6**2)
    # print(C44)

    B = (C11 + 2 * C12) / 3

    # print('C11: ', C11 * eV_to_J / (angstrom_to_meter**3 * 1e9))
    # print('C12: ', C12 * eV_to_J / (angstrom_to_meter**3 * 1e9))
    B_SI = B * eV_to_J / (angstrom_to_meter)**3
    B_GPa = B_SI / 1e9
    # print('B', B_GPa)

    c_prim = (C11 * C12) / 2
    ''' Phonon calculator '''
    al_bulk = bulk('Al', 'fcc', a=4.032)
    N = 7
    ph = Phonons(al_bulk, calc, supercell=(N, N, N), delta=0.05)
    ph.run()

    # Read forces and assemble the dynamical matrix
    ph.read(acoustic=True, banana=True)

    # High-symmetry points in the Brillouin zone
    points = ibz_points['fcc']
    G = points['Gamma']
    X = points['X']
    W = points['W']
    K = points['K']
    L = points['L']
    U = points['U']

    point_names = ['$\Gamma$', 'X', 'U', 'L', '$\Gamma$', 'K']
    path = [G, X, U, L, G, K]

    # Band structure in meV
    path_kc, q, Q = bandpath(path, al_bulk.cell, 100)
    omega_kn = 1000 * ph.band_structure(path_kc)

    # # Check band path
    # fig = plt.figure()
    # ax = fig.add_subplot(111, projection='3d')
    # ax.plot(path_kc[:,0], path_kc[:,1], path_kc[:,2])
    # plt.show()

    # Calculate phonon DOS
    # omega_e, dos_e = ph.dos(kpts=(50, 50, 50), npts=5000, delta=5e-4)
    # omega_e *= 1000
    #
    # # Plot the band structure and DOS
    # plt.figure(1, (8, 6))
    # plt.axes([.1, .07, .67, .85])
    # for n in range(len(omega_kn[0])):
    #     omega_n = omega_kn[:, n]
    #     plt.plot(q, omega_n, 'k-', lw=2)
    #
    # plt.xticks(Q, point_names, fontsize=18)
    # plt.yticks(fontsize=18)
    # plt.xlim(q[0], q[-1])
    # plt.ylabel("Frequency ($\mathrm{meV}$)", fontsize=22)
    # plt.grid('on')
    #
    # plt.axes([.8, .07, .17, .85])
    # plt.fill_between(dos_e, omega_e, y2=0, color='lightgrey', edgecolor='k', lw=1)
    # plt.ylim(0, 35)
    # plt.xticks([], [])
    # plt.yticks([], [])
    # plt.xlabel("DOS", fontsize=18)
    # plt.show()
    ''' Sound velocity '''
    # point_names = ['$\Gamma$', 'X']
    path_100 = [G, X]

    # Band structure in meV
    # Return list of k-points, list of x-coordinates and list of x-coordinates of special points.
    path_kc_100, q_100, Q_100 = bandpath(path_100, al_bulk.cell, 100)
    omega_kn_100 = 1000 * ph.band_structure(path_kc_100)

    # # Find the longitudinal curve (the one that is not initially overlapping)
    # print(omega_kn_100[0:10,0])
    # print(omega_kn_100[0:10,1])
    # print(omega_kn_100[0:10,2]) # <-- This one!

    k = np.sqrt(path_kc_100[:, 0]**2 + path_kc_100[:, 1]**2 +
                path_kc_100[:, 2]**2)  # [Å^-1]
    convert_meV_to_1_over_s = (1 / 1000) * (1 / (6.582119514 * 10**(-16)))
    # print(omega_kn_100[1,2])

    omega_long_at_q_to_0 = omega_kn_100[1, 2] * convert_meV_to_1_over_s
    # omega_long_at_q_to_1 = omega_kn_100[2,2] * convert_meV_to_1_over_s

    c_s = omega_long_at_q_to_0 * 10**(-10) / k[1]  # Speed of sound, [m/s]
    # c_s = 10**(-10) * ((omega_long_at_q_to_1 - omega_long_at_q_to_0)  / (k[2] - k[1])) # Speed of sound, [m/s]
    print(c_s)
    #
    # convert_u_to_kg = 1.66054 * 10**(-27)
    # convert_kg_to_eV_c2 = (2.99792 * 10**8)**2
    # m_Al = al_bulk.get_masses()[0] * convert_u_to_kg * convert_kg_to_eV_c2 # [eV * (s^2/m^2)]
    # nbr_of_atoms_UC = 4 # Number of atoms per unit cell for fcc
    # V_Al = nbr_of_atoms_UC * al_bulk.get_volume() # [Å^3]
    # rho_Al = m_Al * nbr_of_atoms_UC / V_Al # [eV * (s^2/m^2) / Å^3]
    # young = c_s**2 * rho_Al
    #
    # print(C11)
    # print(young)

    plt.figure()
    plt.plot(q_100, omega_kn_100)
    plt.show()