Ejemplo n.º 1
0
 def crossover(self, parent_1, parent_2, crossover_index=-1):
     parent_1_co = parent_1[:-2]
     parent_2_co = parent_2[:-2]
     if self.weight_inheritance:
         parent_1_state_dict = parent_1.state_dict()
         parent_2_state_dict = parent_2.state_dict()
     parent_1_layer_list = sequential_to_layer_list(parent_1_co)
     parent_2_layer_list = sequential_to_layer_list(parent_2_co)
     valid_1, valid_2 = False, False
     n_attempts = 0
     while not valid_1 and not valid_2:
         if crossover_index == -1:
             crossover_index = random.randrange(1, len(parent_1_co))
         child_1_layer_list = parent_1_layer_list[:
                                                  crossover_index] + parent_2_layer_list[
                                                      crossover_index:]
         child_2_layer_list = parent_2_layer_list[:
                                                  crossover_index] + parent_1_layer_list[
                                                      crossover_index:]
         valid_1 = calculate_activation_sizes(child_1_layer_list,
                                              self.X_train.shape[1:]) != -1
         valid_2 = calculate_activation_sizes(child_2_layer_list,
                                              self.X_train.shape[1:]) != -1
         if n_attempts > self.max_crossover_attempts:
             break
     if valid_1 and valid_2:
         child_1, child_2 = generate_sequential(child_1_layer_list, self.X_train.shape[1:],
                                                len(np.unique(self.y_train)), append_flatten=True),\
                            generate_sequential(child_2_layer_list, self.X_train.shape[1:],
                                                len(np.unique(self.y_train)), append_flatten=True)
         if self.weight_inheritance:
             load_state(child_1, parent_1_state_dict, parent_2_state_dict,
                        crossover_index)
             load_state(child_2, parent_2_state_dict, parent_1_state_dict,
                        crossover_index)
         return child_1, child_2
     elif valid_1 and not valid_2:
         child_1 = generate_sequential(child_1_layer_list,
                                       self.X_train.shape[1:],
                                       len(np.unique(self.y_train)),
                                       append_flatten=True)
         if self.weight_inheritance:
             load_state(child_1, parent_1_state_dict, parent_2_state_dict,
                        crossover_index)
         return child_1, parent_2
     elif valid_2 and not valid_1:
         child_2 = generate_sequential(child_2_layer_list,
                                       self.X_train.shape[1:],
                                       len(np.unique(self.y_train)),
                                       append_flatten=True)
         if self.weight_inheritance:
             load_state(child_2, parent_2_state_dict, parent_1_state_dict,
                        crossover_index)
         return parent_1, child_2
     else:
         logging.debug(
             f'Failed crossover attempt after {self.max_crossover_attempts} tries'
         )
         return parent_1, parent_2
Ejemplo n.º 2
0
 def get_best_individual(self):
     if len(self.ga.current_generation) == 0:
         raise Exception(
             'Cannot return best individual before running the GA')
     return generate_sequential(self.ga.best_individual()[1],
                                self.X_train.shape[1:],
                                len(np.unique(self.y_train)),
                                append_flatten=False)
Ejemplo n.º 3
0
 def test_sequential_generation(self):
     input_shape = [3, 100, 100]
     layer_list = model_generation.generate_random_model(
         10, (100, 100), AVAILABLE_MODULES, MAX_N_KERNELS,
         MAX_CONV_KERNEL_SIZE, MAX_CONV_STRIDE, MAX_CONV_DILATION,
         MAX_CONV_OUT_CHANNELS, MAX_POOLING_KERNEL_SIZE, MAX_POOLING_STRIDE)
     sequential = generate_sequential(layer_list,
                                      input_shape=input_shape,
                                      output_size=10)
     self.assertEqual(len(sequential), len(layer_list) + 2)
Ejemplo n.º 4
0
 def create_individual(self, data):
     individual = generate_random_model(
         self.model_n_layers, self.X_train.shape[1:],
         self.available_modules, self.max_n_kernels,
         self.max_conv_kernel_size, self.max_conv_stride,
         self.max_conv_dilation, self.max_conv_out_channels,
         self.max_pooling_kernel_size, self.max_pooling_stride)
     return generate_sequential(individual,
                                input_shape=self.X_train.shape[1:],
                                output_size=len(np.unique(self.y_train)))
Ejemplo n.º 5
0
 def test_sequential_to_layer_list(self):
     input_shape = [3, 100, 100]
     layer_list = model_generation.generate_random_model(
         30, (100, 100), AVAILABLE_MODULES, MAX_N_KERNELS,
         MAX_CONV_KERNEL_SIZE, MAX_CONV_STRIDE, MAX_CONV_DILATION,
         MAX_CONV_OUT_CHANNELS, MAX_POOLING_KERNEL_SIZE, MAX_POOLING_STRIDE)
     sequential = generate_sequential(layer_list,
                                      input_shape=input_shape,
                                      output_size=10)
     new_layer_list = sequential_to_layer_list(sequential)
     for new_layer, layer in zip(new_layer_list, layer_list):
         self.assertEqual(type(new_layer), type(layer))
Ejemplo n.º 6
0
 def test_score_model(self):
     input_shape = [1, 20]
     layer_list = model_generation.generate_random_model(
         10, input_shape, AVAILABLE_MODULES, MAX_N_KERNELS,
         MAX_CONV_KERNEL_SIZE, MAX_CONV_STRIDE, MAX_CONV_DILATION,
         MAX_CONV_OUT_CHANNELS, MAX_POOLING_KERNEL_SIZE, MAX_POOLING_STRIDE)
     X, y = make_classification(100)
     X = X[:, None, :, None]
     sequential = generate_sequential(layer_list,
                                      input_shape=input_shape,
                                      output_size=10)
     print(
         get_model_score(sequential, X[:50], y[:50], X[50:], y[50:], 32, 1))
Ejemplo n.º 7
0
 def mutate(self, individual):
     if self.weight_inheritance:
         individual_state_dict = individual.state_dict()
     individual_layer_list = sequential_to_layer_list(individual)
     mutate_index = random.randrange(len(individual))
     valid_model = False
     while not valid_model:  # this will eventually work so infinite loop is OK
         individual_layer_list[mutate_index] = random_initialize_layer(
             random.choice(self.available_modules), self.X_train.shape[1:],
             self.max_n_kernels, self.max_conv_kernel_size,
             self.max_conv_stride, self.max_conv_dilation,
             self.max_conv_out_channels, self.max_pooling_kernel_size,
             self.max_pooling_stride)
         valid_model = calculate_activation_sizes(
             individual_layer_list, self.X_train.shape[1:]) != -1
     individual = generate_sequential(individual_layer_list,
                                      self.X_train.shape[1:],
                                      len(np.unique(self.y_train)),
                                      append_flatten=False)
     if self.weight_inheritance:
         load_state(individual, individual_state_dict,
                    individual_state_dict, 0)
     return individual
Ejemplo n.º 8
0
 def test_weight_inheritance(self):
     X, y = make_classification(100, n_features=100)
     X = X[:, None, :, None]
     ea = EasyNASGA(X,
                    y,
                    population_size=2,
                    generations=1,
                    weight_inheritance=True)
     input_shape = [1, 100, 1]
     layer_list_1 = [
         init_conv_layer(input_shape,
                         n_kernels=2,
                         conv_kernel_size=(10, 1),
                         conv_stride=(1, 1),
                         conv_dilation=(1, 1),
                         conv_out_channels=10,
                         random_sizes=False),
         init_conv_layer(input_shape,
                         n_kernels=2,
                         conv_kernel_size=(10, 1),
                         conv_stride=(1, 1),
                         conv_dilation=(1, 1),
                         conv_out_channels=10,
                         random_sizes=False),
         init_conv_layer(input_shape,
                         n_kernels=2,
                         conv_kernel_size=(10, 1),
                         conv_stride=(1, 1),
                         conv_dilation=(1, 1),
                         conv_out_channels=10,
                         random_sizes=False)
     ]
     layer_list_2 = [
         init_conv_layer(input_shape,
                         n_kernels=2,
                         conv_kernel_size=(20, 1),
                         conv_stride=(1, 1),
                         conv_dilation=(1, 1),
                         conv_out_channels=10,
                         random_sizes=False),
         init_conv_layer(input_shape,
                         n_kernels=2,
                         conv_kernel_size=(20, 1),
                         conv_stride=(1, 1),
                         conv_dilation=(1, 1),
                         conv_out_channels=10,
                         random_sizes=False),
         init_conv_layer(input_shape,
                         n_kernels=2,
                         conv_kernel_size=(20, 1),
                         conv_stride=(1, 1),
                         conv_dilation=(1, 1),
                         conv_out_channels=10,
                         random_sizes=False)
     ]
     seq_1 = generate_sequential(layer_list_1,
                                 input_shape=input_shape,
                                 output_size=10)
     seq_2 = generate_sequential(layer_list_2,
                                 input_shape=input_shape,
                                 output_size=10)
     cut_point = 1
     child_1, child_2 = ea.crossover(seq_1, seq_2, cut_point)
     seq_1_child = generate_sequential(child_1,
                                       input_shape=input_shape,
                                       output_size=10,
                                       append_flatten=False)
     seq_2_child = generate_sequential(child_2,
                                       input_shape=input_shape,
                                       output_size=10,
                                       append_flatten=False)
     assert (seq_1_child._modules['0'].weight == seq_1._modules['0'].weight
             ).all()
     assert (seq_1_child._modules['2'].weight == seq_2._modules['2'].weight
             ).all()
     assert (seq_2_child._modules['0'].weight == seq_2._modules['0'].weight
             ).all()
     assert (seq_2_child._modules['2'].weight == seq_1._modules['2'].weight
             ).all()