def grade_Q8():
    relu = nn.ReLU()
    flatten = nn.Flatten()
    f1 = nn.Linear("f1", 28 * 28, 100)
    f2 = nn.Linear("f2", 100, 10)
    x = nn.Input2d("images", 28, 28, 1)
    x = flatten(x)
    x = f2(relu(f1(x)))
    x.resolve(np.load("msimple_params.npz"))
    mnist_test = np.load("mnist_test.npz")
    images = mnist_test["images"][:1000]

    infer0 = x.compile(golden.Builder())
    infer1 = x.compile(cpp.Builder())
    label0 = infer0(images=images).argmax(axis=1)
    label1 = infer1(images=images).argmax(axis=1)
    return np.allclose(label0, label1)
def grade_Q4():
    relu = nn.ReLU()
    flatten = nn.Flatten()
    f1 = nn.Linear("f1", 28 * 28, 32)
    f2 = nn.Linear("f2", 32, 10)
    x = nn.Input2d("images", 28, 28, 1)
    x = flatten(x)
    x = f2(relu(f1(x)))
    x.resolve(np.load("p5_params.npz"))
    mnist_test = np.load("mnist_test.npz")
    images = mnist_test["images"]
    labels = mnist_test["labels"]

    infer = x.compile(golden.Builder())
    pred_labels = infer(images=images).argmax(axis=1)
    count = sum(labels == pred_labels)
    return count > 9500
Ejemplo n.º 3
0
def grade_Q4():
    pool = nn.MaxPool2d(2, 2)
    relu = nn.ReLU()
    flatten = nn.Flatten()
    x = nn.Input2d("images", 28, 28, 1)
    c1 = nn.Conv2d("c1", 1, 8, 5) # 28->24
    x = pool(relu(c1(x))) # 24->12
    c2 = nn.Conv2d("c2", 8, 8, 5) # 12->8
    x = pool(relu(c2(x))) # 8->4
    f = nn.Linear("f", 8*4*4, 10)
    x = f(flatten(x))
    x.resolve(np.load("p6_params.npz"))
    mnist_test = np.load("mnist_test.npz")
    images = mnist_test["images"]
    labels = mnist_test["labels"]

    infer = x.compile(golden.Builder())
    pred_labels = infer(images = images).argmax(axis = 1)
    count = sum(labels == pred_labels)
    return count > 9500
def grade_Q10():
    pool = nn.MaxPool2d(2, 2)
    relu = nn.ReLU()
    flatten = nn.Flatten()

    x = nn.Input2d("images", 28, 28, 1)
    c1 = nn.Conv2d("c1", 1, 8, 3)  # 28->26
    c2 = nn.Conv2d("c2", 8, 8, 3)  # 26->24
    x = pool(relu(c2(relu(c1(x)))))  # 24->12
    c3 = nn.Conv2d("c3", 8, 16, 3)  # 12->10
    c4 = nn.Conv2d("c4", 16, 16, 3)  # 10->8
    x = pool(relu(c4(relu(c3(x)))))  # 8->4
    f = nn.Linear("f", 16 * 4 * 4, 10)
    x = f(flatten(x))

    x.resolve(np.load("mnist_params.npz"))
    mnist_test = np.load("mnist_test.npz")
    images = mnist_test["images"][:1000]

    infer0 = x.compile(golden.Builder())
    infer1 = x.compile(cpp.Builder())
    label0 = infer0(images=images).argmax(axis=1)
    label1 = infer1(images=images).argmax(axis=1)
    return np.allclose(label0, label1)
def grade_Q2():
    flatten = nn.Flatten()
    x = flatten(nn.Input("x"))
    return is_same(x, 1, x=(10, 11, 12, 13))