Ejemplo n.º 1
0
def run(file, lang):
    try:
        imgFile = np.array(PIL.Image.open(file).convert("RGB"))

        if lang == 'eng':
            reader = easyocr.Reader(['en'])
        else:
            reader = easyocr.Reader([lang, 'en'])

        text = reader.readtext(imgFile)
        res_list = list()

        for i in text:
            res_list.append(i[1])

        res_str = ''

        for i in res_list:
            res_str = res_str + ' ' + i

        imgFile = PIL.Image.fromarray(imgFile)
        img_io = io.BytesIO()
        imgFile.save(img_io, 'jpeg', quality=100)
        img_io.seek(0)
        img = base64.b64encode(img_io.getvalue())

        return [res_str, img]
    except Exception as e:
        print("error : ", e)
        return 500
Ejemplo n.º 2
0
class OCRReader:
    sim_reader = easyocr.Reader(["ch_sim", "en"])
    tra_reader = easyocr.Reader(["ch_tra", "en"])

    reader_modes = {"traditional": tra_reader, "simplified": sim_reader}

    def __init__(self):
        pass

    def read_image(self, file_path, reader="simplified"):
        return "".join(OCRReader.reader_modes[reader].readtext(file_path,
                                                               detail=0))
Ejemplo n.º 3
0
def get_ocr_result(img, x1y1, x2y2):
    reader = easyocr.Reader(['en'])
    img_tmp = "image_%d.jpg" % random.randint(1, 10)
    cv2.imwrite(img_tmp, (img.numpy() * 255).astype(int))
    result = reader.readtext(img_tmp, detail=0)

    return ' '.join(result)
Ejemplo n.º 4
0
def process_ocr():
    docs = Document.objects.filter(ocr_processed=False)
    _logger.info('=======Process OCR Task========')
    buffer_image = '/code/rest/mediafiles/buffer.jpg'
    for doc in docs:
        path = doc.file.path
        text = ''
        reader = easyocr.Reader(lang_list=['pt'])
        if doc.file:
            if doc.mimetype == 'application/pdf':
                pages = convert_from_path(path, 500)
                for page in pages:
                    page.save(buffer_image, 'JPEG')
                    data = reader.readtext(buffer_image)
                    for element in data:
                        text += element[1] + ' '
            elif doc.mimetype in ['image/jpeg', 'image/png']:
                data = reader.readtext(path)
                for element in data:
                    text += element[1] + ' '
        if text:
            doc.text = text
        doc.ocr_processed = True
        doc.save()
    _logger.info('=======End Process OCR Task========')
Ejemplo n.º 5
0
def temp_and_ocr(thermo_photo):
    """Validate content of thermo photo"""

    thermo = settings.MEDIA_ROOT + str(Path(thermo_photo.thermo_picture.url[6:]))
    temp = []
    
    res = calculate_temp_bbox(thermo) 
    
    for i in range(len(res)):
        probe_img = cv2.imread(settings.MEDIA_ROOT + str(Path(thermo_photo.thermo_picture.url[6:])))
        probe_img = probe_img[res[i]['y1']:res[i]['y2'],
                              res[i]['x1']:res[i]['x2']]

        reader = easyocr.Reader(['th','en'])
        bounds = reader.readtext(probe_img)

        try:
            temp.append(float(bounds[0][1]))
            thermo_photo.is_active = True 
            thermo_photo.save()
        except:
            thermo_photo.is_active = False
            thermo_photo.save()
            send_fail_email(
                thermo_photo.report.user.pk, 
                thermo_photo.report.pk,
                thermo_photo.pk
            )
            return

    thermo_photo.RTMax = max(temp)
    thermo_photo.RTMin = min(temp)
    thermo_photo.RTMean = ((max(temp) + min(temp)) / 2)
    thermo_photo.is_valid = True
    thermo_photo.save()
Ejemplo n.º 6
0
def test():
    leitor = easyocr.Reader(['pt'])
    resultados = leitor.readtext('images/dbg.png', paragraph=False)

    for palavra in resultados:
        print(f'Palavra: {palavra[0]}\n'
              f'Posição em relação a imagem: {palavra[1]}\n')
def test_easyocr_artifact_packs():
    svc = EasyOCRService()

    lang_list = ['ch_sim', 'en']
    recog_network = "zh_sim_g2"

    model = easyocr.Reader(
        lang_list=lang_list,
        gpu=False,
        download_enabled=True,
        recog_network=recog_network,
    )
    svc.pack('chinese_small',
             model,
             lang_list=lang_list,
             recog_network=recog_network)

    assert [x[1] for x in model.readtext(IMAGE_PATH)
            ] == (TEST_RESULT), 'Run inference before saving the artifact'

    saved_path = svc.save()
    loaded_svc = bentoml.load(saved_path)

    assert loaded_svc.predict(imageio.imread(IMAGE_PATH))['text'] == (
        TEST_RESULT), 'Run inference after saving the artifact'

    # clean up saved bundle
    yc = YataiClient()
    yc.repository.delete(f'{svc.name}:{svc.version}')
Ejemplo n.º 8
0
def detectImage():
    try:
        time.sleep(0.5)
        ImageFile.LOAD_TRUNCATED_IMAGES = True
        PIC_PATH = 'image_for_detection/image.jpg'

        response = requests.get(
            "http://www.041er-blj.ch/2020/dakapka/notewriter/image.jpg",
            stream=True)
        file = open(PIC_PATH, "wb")
        response.raw.decode_content = True
        shutil.copyfileobj(response.raw, file)
        del response

        reader = easyocr.Reader(['en', 'de'], gpu=False)
        result = reader.readtext(PIC_PATH, detail=0)

        print(result)

        result_string = ''
        for word in result:
            result_string += word + ' '
        print(result_string)
        os.remove('image_for_detection/image.jpg')
        return result_string
    except:
        return 'Oops! Seems like there was an Error.\nPlease Try again.'
Ejemplo n.º 9
0
def main():
    vc = WebcamVideoStream(src=0).start()

    reader = easyocr.Reader(['en'])

    while True:
        # read the current camera frame
        frame = vc.read()

        # show the current frame (untouched)
        cv2.imshow("My webcam", frame)

        # if 'x' key is pressed, exit the loop
        if cv2.waitKey(1) & 0XFF == ord('x'):
            break
        # if 'c' key is pressed, process the frame for OCR
        if cv2.waitKey(1) & 0xFF == ord('c'):
            # copy the image so it will be a cleaned image for tesseract
            img = vc.mask_frame()

            # DEBUG
            img_box = draw_boxes(img, reader)

            # draw the chart containing the image with boxes
            cv2.imshow("Tesseract", img_box)

            print_img_str(img, reader)

    # close the window and de-allocate any associated memory usage
    cv2.destroyAllWindows()

    # close the already opened camera
    vc.stop()
Ejemplo n.º 10
0
def orc(request):
    import easyocr
    url = request.GET.get('url', '')
    if url:
        reader = easyocr.Reader(['ch_sim', 'en'])  # need to run only once to load model into memory
        result = reader.readtext(url, detail=0)
        return HttpResponse(result)
Ejemplo n.º 11
0
def predict_meme_class(clf, meme_path):

    reader = easyocr.Reader(
        ['en'])  # need to run only once to load model into memory
    sentence = reader.readtext(meme_path)

    result = []

    for text in sentence:
        result.append(text[1])

    sentence = ' '.join(result)

    x_text = extract_features(word_embedder, tokenizer, sentence, meme_path,
                              vgg_model)
    x_text = np.reshape(x_text, (1, 4396))

    predict_label = clf.predict(x_text)
    prediction = np.argmax(predict_label)

    if prediction == 0:
        print("Non-hateful")
    elif prediction == 1:
        print("Hateful")

    return
 def __init__(self):
     self.device = True if torch.cuda.is_available() else False
     self.list_langs = ['en', 'id']
     self.recog_network = 'english_g2'
     self.reader = easyocr.Reader(self.list_langs,
                                  gpu=self.device,
                                  recog_network=self.recog_network)
Ejemplo n.º 13
0
def server(port):
    class SimpleServerFactory(ServerFactory):
        reader = None

        def __init__(self, reader):
            self.reader = reader

    class SimpleReceiver(LineReceiver, ABC):
        def connectionMade(self):
            logger.info('Got connection from %s', self.transport.client)

        def connectionLost(self, reason):
            logger.info('%s disconnected', self.transport.client)

        def dataReceived(self, data):
            if type(data) == bytes:
                logger.info("Received data ...")
            else:
                logger.info("Received data:%s", data)

            result = reader.readtext(data, detail=0)
            str = ''
            for item in result:
                str = str + item
            self.sendLine(str.encode('utf-8'))
            logger.info("Send response: %s", str)

    # need to run only once to load model into memory
    reader = easyocr.Reader(['ch_sim', 'en'])
    factory = SimpleServerFactory(reader)
    factory.protocol = SimpleReceiver
    reactor.listenTCP(port, factory)
    logger.info("TCP server started on port(s): %s ..." % (port))
    reactor.run()
Ejemplo n.º 14
0
 def load(self, event):
     time_start = time.time()
     address = self.filename.GetValue()
     reader = easyocr.Reader(
         ['ch_sim',
          'en'])  # need to run only once to load model into memory
     result = reader.readtext(address)
     time_end = time.time()
     #print(result)
     res = "Time Cost: " + str(time_end - time_start) + ' s\n'
     List = []
     for line in result:
         res = res + line[1] + '\n'
         List.append(line[1])
     print(List)
     self.contents.SetValue(res)  #填充文本框
     rels = kg.extract(text=List)
     g = kg.rel2graph(rels)  ## 依据文本解析结果, 生成networkx有向图
     fig = kg.graph2fig(g, x=1500,
                        y=1500)  ## 生成 matplotlib.figure.Figure 图片
     fig.savefig("KG_test_output.png")
     img = cv2.imread("KG_test_output.png")
     img = img[200:1500, :, :]
     cv2.imwrite("KG_test_output.png", img)
     img = wx.Image("KG_test_output.png",
                    wx.BITMAP_TYPE_PNG).Rescale(750, 650)
     img = img.ConvertToBitmap()
     self.bitmap.SetBitmap(img)
Ejemplo n.º 15
0
def start_ocr():
    print('Start OCR License Plate : ')

    reader = easyocr.Reader(['ko'])
    
    result = None 
    temp = None 

    for a in range(0,5) : 
        str_a = str(a)
        os.remove('media/video/result/frame/detected'+str_a+'.jpg')

    for i in range(index2) : 
        str_i = str(i+5)
        if result is not None:
            temp = result 
        result = reader.readtext('media/video/result/frame/detected'+str_i+'.jpg', detail = 0)

        str_result = "\n".join(result)
        
        if temp != result : 
            with open("media/video/result/번호판.txt", "a") as f:
                f.write(str_i)
                f.write(':')
                f.write(str_result)
                f.write('\n')
            print(result)
Ejemplo n.º 16
0
def processDir(img_folder, img_lang, file_title):
    lang = [img_lang]
    # if img_lang != 'en':
    #     lang.append(img_lang)
    file_names = [
        int(f.split(".")[0]) for f in os.listdir(img_folder)
        if os.path.isfile(os.path.join(img_folder, f))
    ]
    file_names.sort()
    content = ""
    reader = easyocr.Reader(lang)
    for f in file_names:
        file = img_folder + "/" + str(f) + ".jpeg"
        im = PILIMG.open(file)
        result = reader.readtext(file)
        print(file, img_lang)
        st = ""
        for i in result:
            st += i[1] + " "
        content += st + " "
        print(content)
        res_img = draw_boxes(im, result)
        res_file_path = img_folder + "/" + str(f) + "_res.jpeg"
        res_img.save(res_file_path)
    print(content)
    audio_file = convertAudio(content, img_lang, file_title)
    return content, audio_file
Ejemplo n.º 17
0
def getNumberPlateSting(image):
    img = cv2.imread(image)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    bfilter = cv2.bilateralFilter(gray, 11, 17, 17)  # noise removal
    edged = cv2.Canny(bfilter, 30, 200)  # edge detection
    keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE,
                                 cv2.CHAIN_APPROX_SIMPLE)
    contours = imutils.grab_contours(keypoints)
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
    location = None
    for contour in contours:
        approx = cv2.approxPolyDP(contour, 10, True)
        if (len(approx) == 4):
            location = approx
            break
    mask = np.zeros(gray.shape, np.uint8)
    new_image = cv2.drawContours(mask, [location], 0, 255, -1)
    new_image = cv2.bitwise_and(img, img, mask=mask)
    (x, y) = np.where(mask == 255)
    (x1, y1) = (np.min(x), np.min(y))
    (x2, y2) = (np.max(x), np.max(y))
    cropped_image = gray[x1:x2 + 1, y1:y2 + 1]
    reader = easyocr.Reader(['en'])
    result = reader.readtext(cropped_image)
    text = result[0][-2]
    return text
Ejemplo n.º 18
0
def Easy_OCR(img):
    # Text Extraction
    reader = easyocr.Reader(['id', 'en'], gpu=False)
    result = reader.readtext(img, detail=1, paragraph=False)
    txt_list = reader.readtext(img, detail=0, paragraph=False)

    # Doing OCR. Get bounding boxes.
    # bounds = reader.readtext(image_path, detail=1) #detail=1 argument will only give text with its position in an image
    # bounds

    # Draw bounding boxes
    # loop over the results
    for (bbox, text, prob) in result:
        # display the OCR'd text and associated probability
        print("[INFO] {:.4f}: {}".format(prob, text))
        # unpack the bounding box
        (tl, tr, br, bl) = bbox
        tl = (int(tl[0]), int(tl[1]))
        tr = (int(tr[0]), int(tr[1]))
        br = (int(br[0]), int(br[1]))
        bl = (int(bl[0]), int(bl[1]))
        # cleanup the text and draw the box surrounding the text along
        # with the OCR'd text itself
        text = cleanup_text(text)
        cv2.rectangle(img, tl, br, (0, 255, 0), 2)
        cv2.putText(img, text, (tl[0], tl[1] - 10), \
                 cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2)
        # show the output image
    show_wait_destroy("Image", img)
    return txt_list
Ejemplo n.º 19
0
def maybe_find_license_plate_text(raw_img, grey_img, contours):
    # find rectangles
    locations = []
    for contour in contours:
        approx = cv2.approxPolyDP(contour, 10,
                                  True)  # approx polygon in contour
        if len(approx) == 4:
            locations.append(approx)  # found a rectangle location

    # print(locations)
    for location in locations:
        mask = np.zeros(grey_img.shape, np.uint8)

        new_img = cv2.drawContours(mask, [location], 0, 255, -1)
        new_img = cv2.bitwise_and(raw_img, raw_img, mask=mask)

        cropped_img = crop_image(grey_img, mask)

        # instantiate easyocr reader with english language
        reader = easyocr.Reader(['en'])
        # pass cropped image to reader
        result = reader.readtext(cropped_img)

        try:
            text = result[-1][-2]
            if len(text) >= MIN_PLATE_NUM_LEN:
                # valid license plate text found
                return text, location
            else:
                raise IndexError()
        except IndexError:
            pass
    raise Exception("No license plate found :(")
Ejemplo n.º 20
0
def main():

    # classifier to detect math vs non-math text
    clf = Classifier()
    reader = easyocr.Reader(['en'])
    root = Path(f"./image-dataset/{sys.argv[1]}/")

    for image in root.glob("*.jpg"):
        print("Processing", image)
        boxes_data = reader.readtext(str(image),
                                     batch_size=16,
                                     beamWidth=1,
                                     link_threshold=0.1,
                                     low_text=0.4,
                                     height_ths=0.9,
                                     ycenter_ths=0.9)

        boxes_data = remove_non_math(clf, boxes_data)
        boxes = non_max_suppression_fast(np.array([
            (l[0][0], l[0][1], l[2][0], l[2][1]) for l, _, _ in boxes_data
        ]),
                                         overlapThresh=0.1)
        boxes = [(x1, y1, (x2 - x1), (y2 - y1)) for x1, y1, x2, y2 in boxes]
        plot(image, boxes)

        # printing
        table = []
        for _, text, confidence in boxes_data:
            table.append([text, 1])
        f = open(image.parent / "bb" / (image.parts[-1].replace("jpg", "txt")),
                 "w")
        print(tabulate(table, headers=["Text", "Label"]), file=f)
Ejemplo n.º 21
0
def text_EASYOCR(IMAGE_PATH):
    reader = easyocr.Reader(['en', 'ru'], gpu=True)
    result = reader.readtext(IMAGE_PATH)
    text = ''
    for detection in result:
        text = text + '\n' + detection[1]
    return text
Ejemplo n.º 22
0
def car_recogniser(our_img):
    car_image = our_img

    trans = transforms.Compose([
        transforms.Resize((400, 400)),
        transforms.RandomRotation(15),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.RandomErasing(inplace=True),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    # preprocessing for prediction image
    input = trans(car_image)
    input = input.view(1, 3, 400, 400)

    output = car_model(input)

    prediction = int(torch.max(output.data, 1)[1].numpy())

    # return prediction label
    predicted_val = ([value for value in labels_dict.values()][prediction])
    st.text("Detected vehicle model: ")
    predicted_val

    #converting PIL object into numpy array for ocr
    new_array = np.array(car_image)
    reader = easyocr.Reader(['en'], gpu=False)
    bounds = reader.readtext(new_array, detail=0)

    st.text("Detected license plate number: ")
    for x in bounds:
        x
Ejemplo n.º 23
0
 def __init__(self):
     self.mongo_uri = get_project_settings().get('MONGO_URI')
     self.mongo_db = get_project_settings().get('MONGO_DATABASE')
     self.collection = 'one_petro'
     self.client = pymongo.MongoClient(self.mongo_uri)
     self.db = self.client[self.mongo_db]
     self.reader = easyocr.Reader(['en'], gpu=False)
Ejemplo n.º 24
0
def main():
    # Ornek olarak bir gorseli alip grayscale'a donusturuyoruz.
    img = cv2.imread('assets/image1.jpg')
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # plt.imshow(cv2.cvtColor(gray, cv2.COLOR_BGR2RGB))

    b_filter = cv2.bilateralFilter(gray, 11, 17, 17)  # Noise dusuruyoruz.
    edged = cv2.Canny(b_filter, 30, 200)  # Kenar tespiti.

    # gorsellerde countour(sekil) tespiti.
    keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE,
                                 cv2.CHAIN_APPROX_SIMPLE)
    contours = imutils.grab_contours(keypoints)
    contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]

    location = None
    for contour in contours:
        # kare sekillerinin tespiti icin ideal parametre verilir.
        approx = cv2.approxPolyDP(contour, 10, True)
        if len(approx) == 4:
            location = approx
            break

    mask = np.zeros(gray.shape, np.uint8)

    new_image = cv2.drawContours(mask, [location], 0, 255, -1)
    new_image = cv2.bitwise_and(img, img, mask=mask)

    (x, y) = np.where(mask == 255)
    (x1, y1) = (np.min(x), np.min(y))
    (x2, y2) = (np.max(x), np.max(y))

    cropped_image = gray[x1:x2 + 1, y1:y2 + 1]

    # OCR teknolojisi kullanarak kirpilan gorseldeki plaka metnini kaziyoruz.

    reader = easyocr.Reader(['en'])
    result = reader.readtext(cropped_image)
    print(result)

    # OCR SONU

    # maskeleme ve kirpma islemi bitince islenen goruntuyu goster.

    # kazinan plaka numarasi.
    text = result[0][-2]
    font = cv2.FONT_HERSHEY_SIMPLEX
    res = cv2.putText(img,
                      text=text,
                      org=(approx[0][0][0], approx[1][0][1] + 75),
                      fontFace=font,
                      fontScale=1,
                      color=(0, 255, 0),
                      thickness=2)
    res = cv2.rectangle(img, tuple(approx[0][0]), tuple(approx[2][0]),
                        (0, 255, 0), 3)
    plt.imshow(cv2.cvtColor(res, cv2.COLOR_BGR2RGB))
    plt.show()
Ejemplo n.º 25
0
def car_recogniser_exit(our_img):
    # Establishing the connection
    conn = psycopg2.connect(database="vehicle",
                            user='******',
                            password='******',
                            host='127.0.0.1',
                            port='5432')
    # Setting auto commit false
    conn.autocommit = True

    # Creating a cursor object using the cursor() method
    cursor = conn.cursor()

    car_image = our_img

    trans = transforms.Compose([
        transforms.Resize((400, 400)),
        transforms.RandomRotation(15),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.RandomErasing(inplace=True),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

    # preprocessing for prediction image
    input = trans(car_image)
    input = input.view(1, 3, 400, 400)

    output = car_model(input)

    prediction = int(torch.max(output.data, 1)[1].numpy())

    # return prediction label
    predicted_val = ([value for value in labels_dict.values()][prediction])
    # comparing algo
    st.text("Detected vehicle model: ")
    predicted_val

    # converting PIL object into numpy array for ocr
    new_array = np.array(car_image)
    reader = easyocr.Reader(['en'], gpu=False)
    bounds = reader.readtext(new_array, detail=0)

    st.text("Detected license plate number: ")
    num_plate = ' '.join([str(elem) for elem in bounds])
    num_plate

    ext_time = current_time()
    st.text("The vehicle enter the parking at:")
    ext_time
    time_exit = ext_time.strftime("%Y/%m/%d, %H:%M:%S")
    day_exit = ext_time.strftime("%Y %m %d")

    sql = """INSERT INTO vehicle_data_exit(vehicle_brand, plate_number, exit_time, exit_date) VALUES(%s,%s,%s,%s)"""
    record_to_enter = (predicted_val, num_plate, time_exit, day_exit)
    cursor.execute(sql, record_to_enter)
    conn.commit()
    cursor.close()
    conn.close()
Ejemplo n.º 26
0
    def __init__(*args, **kwargs):
        self = args[0]
        self.ocr = easyocr.Reader(['en']) # need to run only once to load model into memory)
        self.debug = False

        for arg in kwargs:
            if arg == "debug":
                self.debug = kwargs[arg]
Ejemplo n.º 27
0
 def __init__(self, imageName, debug=False):
     self.reader = easyocr.Reader(['en'], gpu=False)
     self.color = 'yellow'
     self.width = 2
     self.img = PIL.Image
     self.input_image = imageName
     self.bounds = None
     self.debug = debug
Ejemplo n.º 28
0
def ocr(img_path):
    """

    :param img_path: The path to the YouTube mobile screenshot
    :return: OCR data including location coordinates and text
    """
    reader = easyocr.Reader(['en'])
    return reader.readtext(img_path)
Ejemplo n.º 29
0
 def __init__(self, langs, gpu=False, model_dir=None):
     # WARNING: This is a temporary usage.
     # Ideal thing to do would be just using the recognizer model alone.
     self.reader = easyocr.Reader(langs,
                                  gpu=gpu,
                                  model_storage_directory=model_dir)
     self.detector = None
     self.device = 'cuda' if gpu else 'cpu'
Ejemplo n.º 30
0
 def __init__(self, uuid=None):
     if uuid == None:
         self.d = u2.connect()
     else:
         self.d = u2.connect(uuid)
     d_width, _ = self.d.window_size()
     self.d_width_center = d_width / 2
     self.reader = easyocr.Reader(['ch_sim', 'en'], gpu=False)