def _cast(g): cast_result_name = g.generate_name('cast_result') nodes = [ onnx.helper.make_node("Cast", [g.transients[0].name], [cast_result_name], to=to), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(cast_result_name, to, []), ], )
def _less_or_equal(g): less_or_equal_result_name = g.generate_name('less_or_equal_result') nodes = [ onnx.helper.make_node("LessOrEqual", [g.transients[0].name, g.transients[1].name], [less_or_equal_result_name]), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(less_or_equal_result_name, onnx.TensorProto.BOOL, []), ], )
def _identity(g): identity_name = g.generate_name(name) nodes = [ onnx.helper.make_node("Identity", [g.transients[0].name], [identity_name]), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(identity_name, onnx.TensorProto.UNDEFINED, []), ], )
def _expand(g): expand_result_name = g.generate_name('expand_result') nodes = [ onnx.helper.make_node("Expand", [g.transients[0].name, g.transients[1].name], [expand_result_name]), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(expand_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _add(g): add_result_name = g.generate_name('add_result') nodes = [ onnx.helper.make_node("Add", [g.transients[0].name, g.transients[1].name], [add_result_name]), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info( add_result_name, g.transients[0].type.tensor_type.elem_type, []), ], )
def _flatten(g): flatten_result_name = g.generate_name('flatten_result') nodes = [ onnx.helper.make_node("Flatten", [g.transients[0].name], [flatten_result_name], axis=axis), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(flatten_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _argmax(g): argmax_result_name = g.generate_name('argmax_result') nodes = [ onnx.helper.make_node("ArgMax", [g.transients[0].name], [argmax_result_name], axis=axis, keepdims=keepdims, select_last_index=select_last_index), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(argmax_result_name, onnx.TensorProto.INT64, []), ], )
def _concat(g): concat_result_name = g.generate_name('concat_result') sources = [t.name for t in g.transients] nodes = [ onnx.helper.make_node("Concat", sources, [concat_result_name], axis=axis), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(concat_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _reshape(g): reshape_result_name = g.generate_name('reshape_result') nodes = [ onnx.helper.make_node( "Reshape", [g.transients[0].name, g.transients[1].name], [reshape_result_name], ), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(reshape_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _softmax(g): softmax_result_name = g.generate_name('softmax_result') nodes = [ onnx.helper.make_node( "Softmax", [g.transients[0].name], [softmax_result_name], axis=axis, ), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(softmax_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _gather_elements(g): gather_elements_result_name = g.generate_name('gather_elements_result') nodes = [ onnx.helper.make_node( "GatherElements", [g.transients[0].name, g.transients[1].name], [gather_elements_result_name], axis=axis, ), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(gather_elements_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _category_mapper(g): category_mapper_result_name = g.generate_name('category_mapper_result') nodes = [ onnx.helper.make_node( "CategoryMapper", [g.transients[0].name], [category_mapper_result_name], cats_int64s=cats_int64s, cats_strings=cats_strings, default_int64=default_int64, default_string=default_string, domain='ai.onnx.ml', ), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(category_mapper_result_name, onnx.TensorProto.UNDEFINED, []), ], )
def _reduce_sum(g): reduce_sum_result_name = g.generate_name('reduce_sum_result') nodes = [ onnx.helper.make_node( "ReduceSum", [g.transients[0].name, g.transients[1].name], [reduce_sum_result_name], keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ), ] return g._replace( nodes=graph.extend(g.nodes, nodes), transients=[ onnx.helper.make_tensor_value_info(reduce_sum_result_name, onnx.TensorProto.UNDEFINED, []), ], )