Ejemplo n.º 1
0
 def test_transpose_compatible(self):
     """Test that the results of `transpose` are compatible for sparse and dense arrays."""
     arr = tocoo(np.arange(27).reshape(3, 3, 3))
     np.testing.assert_array_equal(todense(transpose(arr, (1, 2, 0))),
                                   transpose(todense(arr), (1, 2, 0)))
     for _ in range(5):
         ndims = np.random.randint(2, 6)
         dims = tuple(np.random.randint(5, 20, size=ndims))
         axes = np.random.permutation(range(ndims))
         arr = sp.random(dims, density=0.1)
         out1 = todense(transpose(arr, axes))
         out2 = transpose(todense(arr), axes)
         np.testing.assert_allclose(out1, out2, verbose=True)
Ejemplo n.º 2
0
    def predict_interval(self, X, alpha=.05):
        """
        Get a confidence interval for the prediction at `X`.

        Parameters
        ----------
        X : array-like
            The features at which to predict
        alpha : float
            The significance level to use for the interval

        Returns
        -------
        array, shape (2, n_samples)
            Lower and upper bounds for the confidence interval at each sample point
        """
        if self.fit_intercept:
            X = add_constant(X, has_constant='add')
        # NOTE: we use `obs = False` to get a confidence, rather than prediction, interval
        preds = self.results.get_prediction(X).conf_int(alpha=alpha, obs=False)
        # statsmodels uses the last dimension instead of the first to store the confidence intervals,
        # so we need to transpose the result
        return transpose(preds)
Ejemplo n.º 3
0
 def coef__interval(self, alpha):
     if self.fit_intercept:
         return transpose(self.results.conf_int(alpha=alpha)[1:])
     else:
         return transpose(self.results.conf_int(alpha=alpha))