Ejemplo n.º 1
0
def test_clusterdist():
    "Test _ClusterDist class"
    shape = (10, 6, 6, 4)
    locs = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]]
    x = np.random.normal(0, 1, shape)
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 6), Scalar('dim2', range(6),
                                              'unit'), sensor)
    y = NDVar(x, dims)

    # test connecting sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, :2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    print(repr(cdist))
    cdist.add_original(pmap)
    print(repr(cdist))
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))
    assert_equal(cdist.parameter_map.dims, y.dims[1:])

    # test connecting many sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 0, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 1)
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))

    # test keeping sensors separate
    logging.info("TEST:  keeping sensors separate")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, 0] = True
    bin_map[:3, :3, 2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = _ClusterDist(y, 1, 1.5)
    cdist.add_original(pmap)
    assert_equal(cdist.n_clusters, 2)

    # criteria
    ds = datasets.get_uts(True)
    res = testnd.ttest_rel('utsnd',
                           'A',
                           match='rm',
                           ds=ds,
                           samples=0,
                           pmin=0.05)
    assert_less(res.clusters['duration'].min(), 0.01)
    eq_(res.clusters['n_sensors'].min(), 1)
    res = testnd.ttest_rel('utsnd',
                           'A',
                           match='rm',
                           ds=ds,
                           samples=0,
                           pmin=0.05,
                           mintime=0.02,
                           minsensor=2)
    assert_greater_equal(res.clusters['duration'].min(), 0.02)
    eq_(res.clusters['n_sensors'].min(), 2)

    # 1d
    res1d = testnd.ttest_rel('utsnd.sub(time=0.1)',
                             'A',
                             match='rm',
                             ds=ds,
                             samples=0,
                             pmin=0.05)
    assert_dataobj_equal(res1d.p_uncorrected, res.p_uncorrected.sub(time=0.1))

    # TFCE
    logging.info("TEST:  TFCE")
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    time = UTS(-0.1, 0.1, 4)
    scalar = Scalar('scalar', range(10), 'unit')
    dims = ('case', time, sensor, scalar)
    np.random.seed(0)
    y = NDVar(np.random.normal(0, 1, (10, 4, 4, 10)), dims)
    cdist = _ClusterDist(y, 3, None)
    cdist.add_original(y.x[0])
    cdist.finalize()
    assert_equal(cdist.dist.shape, (3, ))
    # I/O
    string = pickle.dumps(cdist, pickle.HIGHEST_PROTOCOL)
    cdist_ = pickle.loads(string)
    assert_equal(repr(cdist_), repr(cdist))
    # find peaks
    x = np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [7, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [5, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 7, 5, 5, 0, 0],
                   [0, 0, 0, 0, 5, 4, 4, 4, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 4, 0, 0],
                   [0, 0, 0, 0, 7, 0, 0, 3, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]])
    tgt = np.equal(x, 7)
    peaks = find_peaks(x, cdist._connectivity)
    logging.debug(' detected: \n%s' % (peaks.astype(int)))
    logging.debug(' target: \n%s' % (tgt.astype(int)))
    assert_array_equal(peaks, tgt)
    # testnd permutation result
    res = testnd.ttest_1samp(y, tfce=True, samples=3)
    assert_allclose(np.sort(res._cdist.dist),
                    [77.5852307, 119.1976153, 217.6270428])

    # parc with TFCE on unconnected dimension
    configure(False)
    x = np.random.normal(0, 1, (10, 5, 2, 4))
    time = UTS(-0.1, 0.1, 5)
    categorial = Categorial('categorial', ('a', 'b'))
    y = NDVar(x, ('case', time, categorial, sensor))
    y0 = NDVar(x[:, :, 0], ('case', time, sensor))
    y1 = NDVar(x[:, :, 1], ('case', time, sensor))
    res = testnd.ttest_1samp(y, tfce=True, samples=3)
    res_parc = testnd.ttest_1samp(y, tfce=True, samples=3, parc='categorial')
    res0 = testnd.ttest_1samp(y0, tfce=True, samples=3)
    res1 = testnd.ttest_1samp(y1, tfce=True, samples=3)
    # cdist
    eq_(res._cdist.shape, (4, 2, 5))
    # T-maps don't depend on connectivity
    assert_array_equal(res.t.x[:, 0], res0.t.x)
    assert_array_equal(res.t.x[:, 1], res1.t.x)
    assert_array_equal(res_parc.t.x[:, 0], res0.t.x)
    assert_array_equal(res_parc.t.x[:, 1], res1.t.x)
    # TFCE-maps should always be the same because they're unconnected
    assert_array_equal(res.tfce_map.x[:, 0], res0.tfce_map.x)
    assert_array_equal(res.tfce_map.x[:, 1], res1.tfce_map.x)
    assert_array_equal(res_parc.tfce_map.x[:, 0], res0.tfce_map.x)
    assert_array_equal(res_parc.tfce_map.x[:, 1], res1.tfce_map.x)
    # Probability-maps should depend on what is taken into account
    p_a = res0.compute_probability_map().x
    p_b = res1.compute_probability_map().x
    assert_array_equal(res_parc.compute_probability_map(categorial='a').x, p_a)
    assert_array_equal(res_parc.compute_probability_map(categorial='b').x, p_b)
    p_parc = res_parc.compute_probability_map()
    assert_array_equal(p_parc.x, res.compute_probability_map().x)
    ok_(np.all(p_parc.sub(categorial='a').x >= p_a))
    ok_(np.all(p_parc.sub(categorial='b').x >= p_b))
    configure(True)
Ejemplo n.º 2
0
def test_clusterdist():
    "Test NDPermutationDistribution class"
    shape = (10, 6, 6, 4)
    locs = [[0, 0, 0],
            [1, 0, 0],
            [1, 1, 0],
            [0, 1, 0]]
    x = np.random.normal(0, 1, shape)
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    dims = ('case', UTS(-0.1, 0.1, 6), Scalar('dim2', range(6), 'unit'),
            sensor)
    y = NDVar(x, dims)

    # test connecting sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, :2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = NDPermutationDistribution(y, 0, 1.5)
    print(repr(cdist))
    cdist.add_original(pmap)
    print(repr(cdist))
    assert cdist.n_clusters == 1
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))
    assert cdist.parameter_map.dims == y.dims[1:]

    # test connecting many sensors
    logging.info("TEST:  connecting sensors")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = NDPermutationDistribution(y, 0, 1.5)
    cdist.add_original(pmap)
    assert cdist.n_clusters == 1
    assert_array_equal(cdist._original_cluster_map == cdist._cids[0],
                       cdist._crop(bin_map).swapaxes(0, cdist._nad_ax))

    # test keeping sensors separate
    logging.info("TEST:  keeping sensors separate")
    bin_map = np.zeros(shape[1:], dtype=np.bool8)
    bin_map[:3, :3, 0] = True
    bin_map[:3, :3, 2] = True
    pmap = np.random.normal(0, 1, shape[1:])
    np.clip(pmap, -1, 1, pmap)
    pmap[bin_map] = 2
    cdist = NDPermutationDistribution(y, 1, 1.5)
    cdist.add_original(pmap)
    assert cdist.n_clusters == 2

    # criteria
    ds = datasets.get_uts(True)
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds, samples=0, pmin=0.05)
    assert res.clusters['duration'].min() < 0.01
    assert res.clusters['n_sensors'].min() == 1
    res = testnd.ttest_rel('utsnd', 'A', match='rm', ds=ds, samples=0, pmin=0.05,
                           mintime=0.02, minsensor=2)
    assert res.clusters['duration'].min() >= 0.02
    assert res.clusters['n_sensors'].min() == 2

    # 1d
    res1d = testnd.ttest_rel('utsnd.sub(time=0.1)', 'A', match='rm', ds=ds,
                             samples=0, pmin=0.05)
    assert_dataobj_equal(res1d.p_uncorrected, res.p_uncorrected.sub(time=0.1))

    # TFCE
    logging.info("TEST:  TFCE")
    sensor = Sensor(locs, ['0', '1', '2', '3'])
    sensor.set_connectivity(connect_dist=1.1)
    time = UTS(-0.1, 0.1, 4)
    scalar = Scalar('scalar', range(10), 'unit')
    dims = ('case', time, sensor, scalar)
    np.random.seed(0)
    y = NDVar(np.random.normal(0, 1, (10, 4, 4, 10)), dims)
    cdist = NDPermutationDistribution(y, 3, None)
    cdist.add_original(y.x[0])
    cdist.finalize()
    assert cdist.dist.shape == (3,)
    # I/O
    string = pickle.dumps(cdist, pickle.HIGHEST_PROTOCOL)
    cdist_ = pickle.loads(string)
    assert repr(cdist_) == repr(cdist)
    # find peaks
    x = np.array([[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [7, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [5, 7, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 6, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 7, 5, 5, 0, 0],
                   [0, 0, 0, 0, 5, 4, 4, 4, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

                  [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 4, 0, 0],
                   [0, 0, 0, 0, 7, 0, 0, 3, 0, 0],
                   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]])
    tgt = np.equal(x, 7)
    peaks = find_peaks(x, cdist._connectivity)
    logging.debug(' detected: \n%s' % (peaks.astype(int)))
    logging.debug(' target: \n%s' % (tgt.astype(int)))
    assert_array_equal(peaks, tgt)
    # testnd permutation result
    res = testnd.ttest_1samp(y, tfce=True, samples=3)
    if sys.version_info[0] == 3:
        target = [96.84232967, 205.83207424, 425.65942084]
    else:
        target = [77.5852307, 119.1976153, 217.6270428]
    assert_allclose(np.sort(res._cdist.dist), target)

    # parc with TFCE on unconnected dimension
    configure(False)
    x = np.random.normal(0, 1, (10, 5, 2, 4))
    time = UTS(-0.1, 0.1, 5)
    categorial = Categorial('categorial', ('a', 'b'))
    y = NDVar(x, ('case', time, categorial, sensor))
    y0 = NDVar(x[:, :, 0], ('case', time, sensor))
    y1 = NDVar(x[:, :, 1], ('case', time, sensor))
    res = testnd.ttest_1samp(y, tfce=True, samples=3)
    res_parc = testnd.ttest_1samp(y, tfce=True, samples=3, parc='categorial')
    res0 = testnd.ttest_1samp(y0, tfce=True, samples=3)
    res1 = testnd.ttest_1samp(y1, tfce=True, samples=3)
    # cdist
    assert res._cdist.shape == (4, 2, 5)
    # T-maps don't depend on connectivity
    assert_array_equal(res.t.x[:, 0], res0.t.x)
    assert_array_equal(res.t.x[:, 1], res1.t.x)
    assert_array_equal(res_parc.t.x[:, 0], res0.t.x)
    assert_array_equal(res_parc.t.x[:, 1], res1.t.x)
    # TFCE-maps should always be the same because they're unconnected
    assert_array_equal(res.tfce_map.x[:, 0], res0.tfce_map.x)
    assert_array_equal(res.tfce_map.x[:, 1], res1.tfce_map.x)
    assert_array_equal(res_parc.tfce_map.x[:, 0], res0.tfce_map.x)
    assert_array_equal(res_parc.tfce_map.x[:, 1], res1.tfce_map.x)
    # Probability-maps should depend on what is taken into account
    p_a = res0.compute_probability_map().x
    p_b = res1.compute_probability_map().x
    assert_array_equal(res_parc.compute_probability_map(categorial='a').x, p_a)
    assert_array_equal(res_parc.compute_probability_map(categorial='b').x, p_b)
    p_parc = res_parc.compute_probability_map()
    assert_array_equal(p_parc.x, res.compute_probability_map().x)
    assert np.all(p_parc.sub(categorial='a').x >= p_a)
    assert np.all(p_parc.sub(categorial='b').x >= p_b)
    configure(True)