Ejemplo n.º 1
0
def _predict_batch(
    model: Union[DetBenchTrain, DetBenchPredict],
    batch: Sequence[torch.Tensor],
    records: Sequence[BaseRecord],
    detection_threshold: float = 0.5,
    keep_images: bool = False,
    device: Optional[torch.device] = None,
) -> List[Prediction]:
    device = device or model_device(model)

    imgs, img_info = batch
    imgs = imgs.to(device)
    img_info = {k: v.to(device) for k, v in img_info.items()}

    bench = DetBenchPredict(unwrap_bench(model))
    bench = bench.eval().to(device)

    raw_preds = bench(x=imgs, img_info=img_info)
    preds = convert_raw_predictions(
        batch=batch,
        raw_preds=raw_preds,
        records=records,
        detection_threshold=detection_threshold,
        keep_images=keep_images,
    )

    return preds
Ejemplo n.º 2
0
 def load_detect(self, checkpoint_path):
     config = get_efficientdet_config('tf_efficientdet_d0')
     config.image_size = [384, 384]
     net = EfficientDet(config, pretrained_backbone=False)
     net.reset_head(num_classes=1)
     checkpoint = torch.load(checkpoint_path,
                             map_location=torch.device('cpu'))
     net.load_state_dict(checkpoint['model_state_dict'])
     del checkpoint
     gc.collect()
     self.net = DetBenchPredict(net)
     self.net.eval()
     self.net.cpu()
Ejemplo n.º 3
0
def predict(
    model: Union[DetBenchTrain, DetBenchPredict],
    batch: Sequence[torch.Tensor],
    detection_threshold: float = 0.5,
    device: Optional[torch.device] = None,
):
    device = device or model_device(model)
    batch = [o.to(device) for o in batch]

    bench = DetBenchPredict(unwrap_bench(model), config=model.config)
    bench = bench.eval().to(device)

    raw_preds = bench(*batch)
    return convert_raw_predictions(raw_preds,
                                   detection_threshold=detection_threshold)
Ejemplo n.º 4
0
def Load_Model(checkpoint_path, which_model='effi5', img_size=1280):
    if which_model == 'effi5':
        config = get_efficientdet_config(
            'tf_efficientdet_d5')  # tf_effi5 model structure

    elif which_model == 'effi4':
        config = get_efficientdet_config(
            'tf_efficientdet_d4')  # tf_effi4 model structure

    elif which_model == 'effi6':
        config = get_efficientdet_config(
            'tf_efficientdet_d6')  # tf_effi4 model structure

    config.image_size = (img_size, img_size)
    config.num_classes = 32
    config.norm_kwargs = dict(eps=.001, momentum=.01)
    net = EfficientDet(config, pretrained_backbone=False)
    net.class_net = HeadNet(config, num_outputs=config.num_classes)

    ckp = torch.load(checkpoint_path)
    net.load_state_dict(ckp['model_state_dict'])
    del ckp

    net = DetBenchPredict(net)
    net.eval()
    return net
Ejemplo n.º 5
0
def get_efficientdet(checkpoint_path):
    config = get_efficientdet_config('efficientdet_d1')
    net = EfficientDet(config, pretrained_backbone=False)
    checkpoint = torch.load(checkpoint_path)
    net.load_state_dict(checkpoint, strict=False)
    net = DetBenchPredict(net)
    return net
def load_net(checkpoint_path):
    config = get_efficientdet_config('tf_efficientdet_d7')
    net = EfficientDet(config, pretrained_backbone=False)

    config.num_classes = 1
    config.image_size=512
    net.class_net = HeadNet(config, num_outputs=config.num_classes, norm_kwargs=dict(eps=.001, momentum=.01))
    print(f"Load model {checkpoint_path}")
    checkpoint = torch.load(checkpoint_path)
    net.cuda()
    new_state_dict = OrderedDict()
    for k, v in checkpoint['model_state_dict'].items():
        if "anchors" in k:
            print("Ignore: ",k)
            continue
        name = re.sub("model.",'',k) if k.startswith('model') else k
        new_state_dict[name] = v

    # net.load_state_dict(checkpoint['model_state_dict'])
    net.load_state_dict(new_state_dict)
    del checkpoint
    gc.collect()

    net = DetBenchPredict(net, config)
    net.eval()
    return net.cuda()
Ejemplo n.º 7
0
    def __init__(self, num_classes=11, checkpoint_path=None):
        super(EfficientDet5AP, self).__init__()
        config = get_efficientdet_config('tf_efficientdet_d5_ap')

        config.image_size = [512, 512]
        config.norm_kwargs = dict(eps=.001, momentum=.01)
        config.soft_nms = True
        config.label_smoothing = 0.1
        # config.legacy_focal = True

        net = EfficientDet(config, pretrained_backbone=False)

        if checkpoint_path == None:
            checkpoint = torch.load(
                './effdet_model/tf_efficientdet_d5_ap-3673ae5d.pth')
            net.load_state_dict(checkpoint)
            net.reset_head(num_classes=num_classes)
            net.class_net = HeadNet(config, num_outputs=config.num_classes)
            self.model = DetBenchTrain(net, config)

        else:
            checkpoint = torch.load(checkpoint_path)
            checkpoint2 = {
                '.'.join(k.split('.')[2:]): v
                for k, v in checkpoint.items()
            }
            del checkpoint2['boxes']

            net.reset_head(num_classes=num_classes)
            net.class_net = HeadNet(config, num_outputs=config.num_classes)

            net.load_state_dict(checkpoint2)
            self.model = DetBenchPredict(net)
Ejemplo n.º 8
0
def predict(
    model: Union[DetBenchTrain, DetBenchPredict],
    batch: Sequence[torch.Tensor],
    detection_threshold: float = 0.5,
    device: Optional[torch.device] = None,
):
    device = device or model_device(model)
    imgs, img_info = batch
    imgs = imgs.to(device)
    img_info = {k: v.to(device) for k, v in img_info.items()}

    bench = DetBenchPredict(unwrap_bench(model))
    bench = bench.eval().to(device)

    raw_preds = bench(x=imgs, img_info=img_info)
    return convert_raw_predictions(raw_preds,
                                   detection_threshold=detection_threshold)
def get_net():
    config = get_efficientdet_config('efficientdet_d0')
    config.num_classes = 29
    config.image_size = [512, 512]
    net = EfficientDet(config, pretrained_backbone=False)
    checkpoint = torch.load(
        'effdet_checkpoints/2021-02-28 19_55_41/last-checkpoint.pth')
    net.load_state_dict(checkpoint['model_state_dict'])
    return DetBenchPredict(net)
Ejemplo n.º 10
0
    def __init__(self, model_weight, num_class):
        super(EfficientDetPred, self).__init__()

        config = get_efficientdet_config(f'tf_efficientdet_{MODEL_USE}')
        config.num_classes = num_class
        config.image_size = [TRAIN_SIZE, TRAIN_SIZE]
        model = EfficientDet(config, pretrained_backbone=False)
        model.class_net = HeadNet(config, num_outputs=config.num_classes)

        new_keys = model.state_dict().keys()
        values = torch.load(model_weight, map_location=lambda storage, loc: storage).values()
        model.load_state_dict(OrderedDict(zip(new_keys, values)))
        self.model = DetBenchPredict(model)

        del new_keys, values
        gc.collect()
Ejemplo n.º 11
0
def load_net(checkpoint_path):
    config = get_efficientdet_config('tf_efficientdet_d5')
    net = EfficientDet(config, pretrained_backbone=False)

    config.num_classes = 1
    config.image_size=512
    net.class_net = HeadNet(config, num_outputs=config.num_classes, norm_kwargs=dict(eps=.001, momentum=.01))

    checkpoint = torch.load(checkpoint_path)
    net.load_state_dict(checkpoint['model_state_dict'])

    del checkpoint
    gc.collect()

    net = DetBenchPredict(net, config)
    net.eval();
    return net.cuda()
def create_model_from_config(config, bench_name='', pretrained=False, checkpoint_path='', **kwargs):
    model = EfficientDet(config, **kwargs)

    # FIXME handle different head classes / anchors and re-init of necessary layers w/ pretrained load

    if checkpoint_path:
        load_checkpoint(model, checkpoint_path)
    elif pretrained:
        load_pretrained(model, config.url)

    config = copy.deepcopy(config)
    # override num classes
    config.num_classes = 1
    model.class_net = HeadNet(config, num_outputs=1, norm_kwargs=dict(eps=0.001, momentum=0.01))

    # wrap model in task specific bench if set
    if bench_name == 'train':
        model = DetBenchTrain(model, config)
        model.loss_fn = DetectionLoss(config)
    elif bench_name == 'predict':
        model = DetBenchPredict(model, config)
    return model
def get_predict_model(config_name,
                      img_size,
                      model_ckpt,
                      useGN=False,
                      light=False):
    config = get_efficientdet_config(config_name)
    model = EfficientDet(config, pretrained_backbone=False)
    config.num_classes = 1
    config.image_size = img_size
    model.class_net = HeadNet(
        config,
        num_outputs=config.num_classes,
        norm_kwargs=dict(eps=0.001, momentum=0.01),
    )
    if useGN is True:
        model = convert_layers(model,
                               nn.BatchNorm2d,
                               nn.GroupNorm,
                               True,
                               num_groups=2)
    if light is True:
        count = 0
        state_dict = torch.load(model_ckpt)["state_dict"]
        new_state_dict = OrderedDict()
        for key, value in state_dict.items():
            if key.startswith("model.model."):
                new_key = reduce(lambda a, b: a + "." + b, key.split(".")[2:])
                if new_key in model.state_dict():
                    new_state_dict[new_key] = value
                    count += 1
        model.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(torch.load(model_ckpt)["state_dict"])

    print(f"loaded {count} keys")
    return DetBenchPredict(model, config)
Ejemplo n.º 14
0
class Predictor(nn.Module):
    def __init__(self,
                 detect_path='weights/best-checkpoint.bin',
                 model_arc='weights/model_eff_arc.json',
                 weights='weights/model_best_acc.h5'):
        #clf
        super().__init__()
        with open(model_arc, 'r') as f:
            self.model = tf.keras.models.model_from_json(f.read())
        self.model.load_weights(weights)
        self.mapper = [
            'TH', 'ACB', 'Acecook', 'Addidas', 'Agribank', 'Bidv', 'Big C',
            'Cai Lan', 'Chinsu', 'Colgate', 'FPT', 'Habeco', 'Hai Ha',
            'Jollibee', 'KFC', 'Kinh Do', 'Lotte mart', 'Mbbank new',
            'Mbbank old', 'Neptune', 'Nike', 'Pepsi', 'Petrolimex',
            'Phuc Long', 'Samsung', 'SHB', 'Techcombank', 'The Coffe House',
            'The gioi di dong', 'TPbank', 'Vietcombank', 'Vietinbank',
            'Viettel', 'Vinamilk', 'Vinfast', 'Vinmart', 'Vifon', 'Vnpt',
            'Vpbank'
        ]
        #detect
        self.transform = A.Compose([
            A.Resize(height=512, width=512, p=1.0),
            ToTensor(),
        ])

        self.load_detect(detect_path)

    def preprocess_detect(self, path_img):
        image = cv2.imread(path_img)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        transformer = self.transform(image=image)
        image = transformer['image']
        return image.unsqueeze(0).cpu().float()

    def preprocess_clf(self, batch):
        tensor = []
        for img in batch:
            img = cv2.resize(img, (224, 224))
            img = img / 255.0
            tensor.append(img)
        return np.array(tensor)

    def make_predictions(self, images, score_threshold=0.21):
        # images = torch.stack(images).cpu().float()
        predictions = []
        with torch.no_grad():
            det = self.net(
                images, {
                    'img_scale': torch.tensor(
                        [1.] * images.shape[0]).float().cpu(),
                    'img_size': torch.tensor([512, 512]).cpu()
                })
            for i in range(images.shape[0]):
                boxes = det[i].detach().cpu().numpy()[:, :4]
                scores = det[i].detach().cpu().numpy()[:, 4]
                labels = det[i].detach().cpu().numpy()[:, 5]
                indexes = np.where(scores > score_threshold)[0]
                predictions.append({
                    'boxes': boxes[indexes],
                    'scores': scores[indexes],
                    'labels': labels[indexes]
                })
        return [predictions]

    def load_detect(self, checkpoint_path):
        config = get_efficientdet_config('tf_efficientdet_d5')
        config.image_size = [512, 512]
        net = EfficientDet(config, pretrained_backbone=False)
        net.reset_head(num_classes=1)

        checkpoint = torch.load(checkpoint_path,
                                map_location=torch.device('cpu'))
        net.load_state_dict(checkpoint['model_state_dict'])
        del checkpoint
        gc.collect()
        self.net = DetBenchPredict(net)
        self.net.eval()
        self.net.cpu()

    def forward(self, path_test):
        images = self.preprocess_detect(path_test)
        s_t = time.time()
        predictions = self.make_predictions(images)
        print(time.time() - s_t)
        keep_idx = torchvision.ops.nms(
            torch.from_numpy(predictions[0][0]['boxes']),
            torch.from_numpy(predictions[0][0]['scores']), 0.1)
        boxes = []
        scores = []
        labels = []
        for i in keep_idx:
            boxes.append(predictions[0][0]['boxes'][i])
            scores.append(predictions[0][0]['scores'][i])
            labels.append(predictions[0][0]['labels'][i])
        boxes = np.array(boxes).astype(np.float32).clip(min=0, max=511)
        image_original = cv2.imread(path_test)
        image_original = cv2.cvtColor(image_original, cv2.COLOR_BGR2RGB)
        h, w = image_original.shape[0], image_original.shape[1]
        batch_clf = []
        boxes[:, 0] = boxes[:, 0] * (w / 512)
        boxes[:, 1] = boxes[:, 1] * (h / 512)
        boxes[:, 2] = boxes[:, 2] * (w / 512)
        boxes[:, 3] = boxes[:, 3] * (h / 512)
        for box in boxes:
            batch_clf.append(image_original[int(box[1]):int(box[3]),
                                            int(box[0]):int(box[2]), :])

        tensor = self.preprocess_clf(batch_clf)
        time_clf = time.time()
        print(tensor.shape)
        predictions = self.model.predict(tensor)
        print(f"clf:{time.time()-time_clf}")
        result = []
        for box, score, prediction in zip(boxes, scores, predictions):
            box[0] = int(box[0])
            box[1] = int(box[1])
            box[2] = int(box[2])
            box[3] = int(box[3])
            idx = int(np.argmax(prediction))
            result.append({
                'box': box,
                'label': self.mapper[idx],
                'score_detect': score,
                'score_clf': prediction[idx]
            })
        return image_original, result
def validate(args):
    # might as well try to validate something
    args.pretrained = args.pretrained or not args.checkpoint
    args.prefetcher = not args.no_prefetcher
    args.redundant_bias = not args.no_redundant_bias

    # create model
    config = get_efficientdet_config(args.model)
    config.redundant_bias = args.redundant_bias
    config.num_classes = 3
    model = EfficientDet(config)
    if args.checkpoint:
        state_dict = load_state_dict(args.checkpoint)
        model.load_state_dict(state_dict, strict=True)

    param_count = sum([m.numel() for m in model.parameters()])
    print('Model %s created, param count: %d' % (args.model, param_count))

    bench = DetBenchPredict(model, config)
    bench = bench.cuda()
    if has_amp:
        print('Using AMP mixed precision.')
        bench = amp.initialize(bench, opt_level='O1')
    else:
        print('AMP not installed, running network in FP32.')

    if args.num_gpu > 1:
        bench = torch.nn.DataParallel(bench,
                                      device_ids=list(range(args.num_gpu)))

    annotation_path = os.path.join(args.data, 'annotations',
                                   f'test_annotations.json')
    image_dir = os.path.join(args.data, 'test')
    print(annotation_path)
    print(image_dir)
    dataset = CocoDetection(os.path.join(args.data, image_dir),
                            annotation_path)
    print(dataset)
    loader = create_loader(dataset,
                           input_size=config.image_size,
                           batch_size=args.batch_size,
                           use_prefetcher=args.prefetcher,
                           interpolation=args.interpolation,
                           fill_color=args.fill_color,
                           num_workers=args.workers,
                           pin_mem=args.pin_mem)
    print(len(loader))
    img_ids = []
    results = []
    model.eval()
    batch_time = AverageMeter()
    end = time.time()
    with torch.no_grad():
        for i, (input, target) in enumerate(loader):
            output = bench(input, target['img_scale'], target['img_size'])
            output = output.cpu()
            sample_ids = target['img_id'].cpu()
            for index, sample in enumerate(output):
                image_id = int(sample_ids[index])
                for det in sample:
                    score = float(det[4])
                    if score < .001:  # stop when below this threshold, scores in descending order
                        break
                    coco_det = dict(image_id=image_id,
                                    bbox=det[0:4].tolist(),
                                    score=score,
                                    category_id=int(det[5]))
                    img_ids.append(image_id)
                    results.append(coco_det)

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % args.log_freq == 0:
                print(
                    'Test: [{0:>4d}/{1}]  '
                    'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s)  '
                    .format(
                        i,
                        len(loader),
                        batch_time=batch_time,
                        rate_avg=input.size(0) / batch_time.avg,
                    ))

    json.dump(results, open(args.results, 'w'), indent=4)
    return results
Ejemplo n.º 16
0
class Predictor(nn.Module):
    def __init__(self, detect_path):
        super().__init__()
        #detect
        self.transform = A.Compose([
            A.Resize(height=384, width=384, p=1.0),
            ToTensor(),
        ])
        self.load_detect(detect_path)

    def preprocess_detect(self, path_img):
        image = cv2.imread(path_img)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        transformer = self.transform(image=image)
        image = transformer['image']
        return image.unsqueeze(0).cpu().float()

    def make_predictions(self, images, score_threshold=0.25):
        # images = torch.stack(images).cpu().float()
        predictions = []
        with torch.no_grad():
            det = self.net(
                images, {
                    'img_scale': torch.tensor(
                        [1.] * images.shape[0]).float().cpu(),
                    'img_size': torch.tensor([384, 384]).cpu()
                })
            for i in range(images.shape[0]):
                boxes = det[i].detach().cpu().numpy()[:, :4]
                scores = det[i].detach().cpu().numpy()[:, 4]
                labels = det[i].detach().cpu().numpy()[:, 5]
                indexes = np.where(scores > score_threshold)[0]
                predictions.append({
                    'boxes': boxes[indexes],
                    'scores': scores[indexes],
                    'labels': labels[indexes]
                })
        return [predictions]

    def load_detect(self, checkpoint_path):
        config = get_efficientdet_config('tf_efficientdet_d0')
        config.image_size = [384, 384]
        net = EfficientDet(config, pretrained_backbone=False)
        net.reset_head(num_classes=1)
        checkpoint = torch.load(checkpoint_path,
                                map_location=torch.device('cpu'))
        net.load_state_dict(checkpoint['model_state_dict'])
        del checkpoint
        gc.collect()
        self.net = DetBenchPredict(net)
        self.net.eval()
        self.net.cpu()

    def forward(self, path_test):
        images = self.preprocess_detect(path_test)
        s_t = time.time()
        predictions = self.make_predictions(images)
        print(time.time() - s_t)
        batch_recognize = []
        boxes = []
        scores = []
        labels = []
        if (predictions[0][0]['boxes'] != []):
            keep_idx = torchvision.ops.nms(
                torch.from_numpy(predictions[0][0]['boxes']),
                torch.from_numpy(predictions[0][0]['scores']), 0.1)
            for i in keep_idx:
                boxes.append(predictions[0][0]['boxes'][i])
                scores.append(predictions[0][0]['scores'][i])
                labels.append(predictions[0][0]['labels'][i])
            boxes = np.array(boxes).astype(np.float32).clip(min=0, max=511)
            image_original = cv2.imread(path_test)
            image_original = cv2.cvtColor(image_original, cv2.COLOR_BGR2RGB)
            h, w = image_original.shape[0], image_original.shape[1]
            boxes[:, 0] = boxes[:, 0] * (w / 384)
            boxes[:, 1] = boxes[:, 1] * (h / 384)
            boxes[:, 2] = boxes[:, 2] * (w / 384)
            boxes[:, 3] = boxes[:, 3] * (h / 384)
            for box in boxes:
                batch_recognize.append(
                    image_original[int(box[1]):int(box[3]),
                                   int(box[0]):int(box[2]), :])
        return batch_recognize, boxes