Ejemplo n.º 1
0
def visEFT_singleSubject(renderer):

    MAGNIFY_RATIO = 3           #onbbox only. To magnify the rendered image size 

    bStopForEachSample = args.waitforkeys      #if True, it will wait for any key pressed to move to the next sample
    bShowTurnTable = args.turntable

    inputData = args.fit_data
    imgDir = args.img_dir

    #Load SMPL model
    smplModelPath = args.smpl_dir + '/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl'
    smpl = SMPL_19(smplModelPath, batch_size=1, create_transl=False)
    
    #Load EFT fitting data
    print(f"Loading EFT data from {inputData}")
    if os.path.exists(inputData):
        with open(inputData,'r') as f:
            eft_data = json.load(f)
            print("EFT data: ver {}".format(eft_data['ver']))
            eft_data_all = eft_data['data']
    else:
        print(f"ERROR:: Cannot find EFT data: {inputData}")
        assert False


    #Visualize each EFT Fitting output
    for idx, eft_data in enumerate(tqdm(eft_data_all)):
        
        #Get raw image path
        imgFullPath = eft_data['imageName']
        # imgName = os.path.basename(imgFullPath)
        imgName = imgFullPath
        imgFullPath =os.path.join(imgDir, imgName)
        if os.path.exists(imgFullPath) ==False:
            print(f"Img path is not valid: {imgFullPath}")
            assert False
        rawImg = cv2.imread(imgFullPath)
        print(f'Input image: {imgFullPath}')

        #EFT data
        bbox_scale = eft_data['bbox_scale']
        bbox_center = eft_data['bbox_center']

        pred_camera = np.array(eft_data['parm_cam'])
        pred_betas = np.reshape(np.array( eft_data['parm_shape'], dtype=np.float32), (1,10) )     #(10,)
        pred_betas = torch.from_numpy(pred_betas)

        pred_pose_rotmat = np.reshape( np.array( eft_data['parm_pose'], dtype=np.float32), (1,24,3,3)  )        #(24,3,3)
        pred_pose_rotmat = torch.from_numpy(pred_pose_rotmat)

        keypoint_2d_validity = eft_data['joint_validity_openpose18']

        #COCO only. Annotation index
        if 'annotId' in eft_data.keys():
            print("COCO annotId: {}".format(eft_data['annotId']))


        #Get SMPL mesh and joints from SMPL parameters
        smpl_output = smpl(betas=pred_betas, body_pose=pred_pose_rotmat[:,1:], global_orient=pred_pose_rotmat[:,[0]], pose2rot=False)
        smpl_vertices = smpl_output.vertices.detach().cpu().numpy()[0]
        smpl_joints_3d = smpl_output.joints.detach().cpu().numpy()[0]

        #Crop image using cropping information
        croppedImg, boxScale_o2n, bboxTopLeft = crop_bboxInfo(rawImg, bbox_center, bbox_scale, (BBOX_IMG_RES, BBOX_IMG_RES) )


        if MAGNIFY_RATIO>1:
            croppedImg = cv2.resize(croppedImg, (croppedImg.shape[1]*MAGNIFY_RATIO, croppedImg.shape[0]*MAGNIFY_RATIO) )

        ########################
        # Visualization
        ########################

        # Visualize 2D image
        if True:
            viewer2D.ImShow(rawImg, name='rawImg', waitTime=1)      #You should press any key 
            viewer2D.ImShow(croppedImg, name='croppedImg', waitTime=1)

            #Convert bbox_center, bbox_scale --> bbox_xyxy
            bbox_xyxy = conv_bboxinfo_bboxXYXY(bbox_scale,bbox_center)
            img_bbox = viewer2D.Vis_Bbox_minmaxPt(rawImg.copy(),bbox_xyxy[:2], bbox_xyxy[2:])
            viewer2D.ImShow(img_bbox, name='img_bbox', waitTime=1)

        # Visualization Mesh
        if True:    
            camParam_scale = pred_camera[0]
            camParam_trans = pred_camera[1:]
            pred_vert_vis = smpl_vertices
            smpl_joints_3d_vis = smpl_joints_3d

            if args.onbbox:
                pred_vert_vis = convert_smpl_to_bbox(pred_vert_vis, camParam_scale, camParam_trans)
                smpl_joints_3d_vis = convert_smpl_to_bbox(smpl_joints_3d_vis, camParam_scale, camParam_trans)
                renderer.setBackgroundTexture(croppedImg)
                renderer.setViewportSize(croppedImg.shape[1], croppedImg.shape[0])

                pred_vert_vis *=MAGNIFY_RATIO
            else:
                #Covert SMPL to BBox first
                pred_vert_vis = convert_smpl_to_bbox(pred_vert_vis, camParam_scale, camParam_trans)
                smpl_joints_3d_vis = convert_smpl_to_bbox(smpl_joints_3d_vis, camParam_scale, camParam_trans)

                #From cropped space to original
                pred_vert_vis = convert_bbox_to_oriIm(pred_vert_vis, boxScale_o2n, bboxTopLeft, rawImg.shape[1], rawImg.shape[0]) 
                smpl_joints_3d_vis = convert_bbox_to_oriIm(smpl_joints_3d_vis, boxScale_o2n, bboxTopLeft, rawImg.shape[1], rawImg.shape[0])
                renderer.setBackgroundTexture(rawImg)
                renderer.setViewportSize(rawImg.shape[1], rawImg.shape[0])

                #In orthographic model. XY of 3D is just 2D projection
                smpl_joints_2d_vis = conv_3djoint_2djoint(smpl_joints_3d_vis,rawImg.shape )
                # image_2dkeypoint_pred = viewer2D.Vis_Skeleton_2D_smpl45(smpl_joints_2d_vis, image=rawImg.copy(),color=(0,255,255))
                image_2dkeypoint_pred = viewer2D.Vis_Skeleton_2D_Openpose18(smpl_joints_2d_vis, image=rawImg.copy(),color=(255,0,0))        #All 2D joint
                image_2dkeypoint_pred = viewer2D.Vis_Skeleton_2D_Openpose18(smpl_joints_2d_vis, pt2d_visibility=keypoint_2d_validity, image=image_2dkeypoint_pred,color=(0,255,255))        #Only valid
                viewer2D.ImShow(image_2dkeypoint_pred, name='keypoint_2d_pred', waitTime=1)

            pred_meshes = {'ver': pred_vert_vis, 'f': smpl.faces}
            v = pred_meshes['ver'] 
            f = pred_meshes['f']

            #Visualize in the original image space
            renderer.set_mesh(v,f)
            renderer.showBackground(True)
            renderer.setWorldCenterBySceneCenter()
            renderer.setCameraViewMode("cam")

            #Set image size for rendering
            if args.onbbox:
                renderer.setViewportSize(croppedImg.shape[1], croppedImg.shape[0])
            else:
                renderer.setViewportSize(rawImg.shape[1], rawImg.shape[0])
                
            renderer.display()
            renderImg = renderer.get_screen_color_ibgr()
            viewer2D.ImShow(renderImg,waitTime=1)
        
        # Visualize multi-level cropped bbox
        if args.multi_bbox:
            from demo.multi_bbox_gen import multilvel_bbox_crop_gen
            
            bbox_list = multilvel_bbox_crop_gen(rawImg, pred_vert_vis, bbox_center, bbox_scale)

            #Visualize BBox
            for b_idx, b in enumerate(bbox_list):
                # bbox_xyxy= conv_bboxinfo_centerscale_to_bboxXYXY(b['center'], b['scale'])
                bbox_xyxy= b['bbox_xyxy']
                if b_idx==0:
                    img_multi_bbox = viewer2D.Vis_Bbox_minmaxPt(rawImg,  bbox_xyxy[:2], bbox_xyxy[2:] ,color=(0,255,0))
                else:
                    img_multi_bbox = viewer2D.Vis_Bbox_minmaxPt(rawImg,  bbox_xyxy[:2], bbox_xyxy[2:] ,color=(0,255,255))
            viewer2D.ImShow(img_multi_bbox, name='multi_bbox', waitTime=1)
            # for bbox in bbox_list:


        # Visualization Mesh on side view
        if True:
            renderer.showBackground(False)
            renderer.setWorldCenterBySceneCenter()
            # renderer.setCameraViewMode("side")    #To show the object in side vie
            renderer.setCameraViewMode("free")     
            renderer.setViewAngle(90,20)

            #Set image size for rendering
            if args.onbbox:
                renderer.setViewportSize(croppedImg.shape[1], croppedImg.shape[0])
            else:
                renderer.setViewportSize(rawImg.shape[1], rawImg.shape[0])
            renderer.display()
            sideImg = renderer.get_screen_color_ibgr()        #Overwite on rawImg
            viewer2D.ImShow(sideImg,waitTime=1)
            
            sideImg = cv2.resize(sideImg, (renderImg.shape[1], renderImg.shape[0]) )
            # renderImg = cv2.resize(renderImg, (sideImg.shape[1], sideImg.shape[0]) )
        
        # Visualization Mesh on side view
        if True:
            renderer.showBackground(False)
            renderer.setWorldCenterBySceneCenter()
            # renderer.setCameraViewMode("side")    #To show the object in side vie
            renderer.setCameraViewMode("free")     
            renderer.setViewAngle(-60,50)

            #Set image size for rendering
            if args.onbbox:
                renderer.setViewportSize(croppedImg.shape[1], croppedImg.shape[0])
            else:
                renderer.setViewportSize(rawImg.shape[1], rawImg.shape[0])
            renderer.display()
            sideImg_2 = renderer.get_screen_color_ibgr()        #Overwite on rawImg
            viewer2D.ImShow(sideImg_2,waitTime=1)
            
            sideImg_2 = cv2.resize(sideImg_2, (renderImg.shape[1], renderImg.shape[0]) )
            # renderImg = cv2.resize(renderImg, (sideImg.shape[1], sideImg.shape[0]) )


        #Visualize camera view and side view
        saveImg = np.concatenate( (renderImg,sideImg), axis =1)
        # saveImg = np.concatenate( (croppedImg, renderImg,sideImg, sideImg_2), axis =1)

        if bStopForEachSample:
            viewer2D.ImShow(saveImg,waitTime=0) #waitTime=0 means that it will wait for any key pressed
        else:
            viewer2D.ImShow(saveImg,waitTime=1)
        
        #Render Mesh on the rotating view
        if bShowTurnTable:
            renderer.showBackground(False)
            renderer.setWorldCenterBySceneCenter()
            renderer.setCameraViewMode("free")
            for i in range(90):
                renderer.setViewAngle(i*4,0)
                renderer.display()
                sideImg = renderer.get_screen_color_ibgr()        #Overwite on rawImg
                viewer2D.ImShow(sideImg,waitTime=1,name="turn_table")

                if False:       #If you want to save this into files
                    render_output_path = args.render_dir + '/turntable_{}_{:08d}.jpg'.format(os.path.basename(imgName),i)
                    cv2.imwrite(render_output_path, sideImg)

        #Save the rendered image to files
        if True:    
            if os.path.exists(args.render_dir) == False:
                os.mkdir(args.render_dir)
            render_output_path = args.render_dir + '/render_{}_eft{:08d}.jpg'.format(imgName[:-4],idx)
            print(f"Save to {render_output_path}")
            cv2.imwrite(render_output_path, saveImg)
Ejemplo n.º 2
0
def visEFT_singleSubject(renderer):

    bStopForEachSample = args.waitforkeys  #if True, it will wait for any key pressed to move to the next sample

    inputData = args.fit_data
    imgDir = args.img_dir

    #Load SMPL model
    smplModelPath = args.smpl_dir + '/basicModel_neutral_lbs_10_207_0_v1.0.0.pkl'
    smpl = SMPL(smplModelPath, batch_size=1, create_transl=False)

    print("Loading coco annotation from:{}".format(args.cocoAnnotFile))
    assert os.path.exists(args.cocoAnnotFile)
    cocoAnnotDic = loadCOCOAnnot(args.cocoAnnotFile)

    #Load EFT fitting data
    print(f"Loading EFT data from {inputData}")
    if os.path.exists(inputData):
        with open(inputData, 'r') as f:
            eft_data = json.load(f)
            print("EFT data: ver {}".format(eft_data['ver']))
            eft_data_all = eft_data['data']
    else:
        print(f"ERROR:: Cannot find EFT data: {inputData}")
        assert False

    #Visualize each EFT Fitting output
    for idx, eft_data in enumerate(eft_data_all):

        #Get raw image path
        imgFullPath = eft_data['imageName']
        imgName = os.path.basename(imgFullPath)
        imgFullPath = os.path.join(imgDir, imgName)
        if os.path.exists(imgFullPath) == False:
            print(f"Img path is not valid: {imgFullPath}")
            assert False
        rawImg = cv2.imread(imgFullPath)
        print(f'Input image: {imgFullPath}')

        #EFT data
        bbox_scale = eft_data['bbox_scale']
        bbox_center = eft_data['bbox_center']

        pred_camera = np.array(eft_data['parm_cam'])
        pred_betas = np.reshape(
            np.array(eft_data['parm_shape'], dtype=np.float32),
            (1, 10))  #(10,)
        pred_betas = torch.from_numpy(pred_betas)

        pred_pose_rotmat = np.reshape(
            np.array(eft_data['parm_pose'], dtype=np.float32),
            (1, 24, 3, 3))  #(24,3,3)
        pred_pose_rotmat = torch.from_numpy(pred_pose_rotmat)

        keypoint_2d_validity = eft_data['joint_validity_openpose18']

        #COCO only. Annotation index
        print("COCO annotId: {}".format(eft_data['annotId']))
        annot = cocoAnnotDic[eft_data['annotId']]
        print(annot['bbox'])

        ########################
        #Visualize COCO annotation
        annot_keypoint = np.reshape(
            np.array(annot['keypoints'], dtype=np.float32), (-1, 3))  #17,3
        rawImg = viewer2D.Vis_Skeleton_2D_coco(annot_keypoint[:, :2],
                                               annot_keypoint[:, 2],
                                               image=rawImg)
        rawImg = viewer2D.Vis_Bbox(rawImg, annot['bbox'], color=(0, 255, 0))

        #Get SMPL mesh and joints from SMPL parameters
        smpl_output = smpl(betas=pred_betas,
                           body_pose=pred_pose_rotmat[:, 1:],
                           global_orient=pred_pose_rotmat[:, [0]],
                           pose2rot=False)
        smpl_vertices = smpl_output.vertices.detach().cpu().numpy()[0]
        smpl_joints_3d = smpl_output.joints.detach().cpu().numpy()[0]

        #Crop image using cropping information
        croppedImg, boxScale_o2n, bboxTopLeft = crop_bboxInfo(
            rawImg, bbox_center, bbox_scale, (BBOX_IMG_RES, BBOX_IMG_RES))

        ########################
        # Visualization of EFT
        ########################

        # Visualize 2D image
        if True:
            viewer2D.ImShow(rawImg, name='rawImg',
                            waitTime=1)  #You should press any key
            viewer2D.ImShow(croppedImg, name='croppedImg', waitTime=1)

            #Convert bbox_center, bbox_scale --> bbox_xyxy
            bbox_xyxy = conv_bboxinfo_bboxXYXY(bbox_scale, bbox_center)
            img_bbox = viewer2D.Vis_Bbox_minmaxPt(rawImg.copy(), bbox_xyxy[:2],
                                                  bbox_xyxy[2:])
            viewer2D.ImShow(img_bbox, name='img_bbox', waitTime=1)

        # Visualization Mesh
        if True:
            camParam_scale = pred_camera[0]
            camParam_trans = pred_camera[1:]
            pred_vert_vis = smpl_vertices
            smpl_joints_3d_vis = smpl_joints_3d

            if True:  #args.onbbox:
                pred_vert_vis = convert_smpl_to_bbox(pred_vert_vis,
                                                     camParam_scale,
                                                     camParam_trans)
                smpl_joints_3d_vis = convert_smpl_to_bbox(
                    smpl_joints_3d_vis, camParam_scale, camParam_trans)
                renderer.setBackgroundTexture(croppedImg)
                renderer.setViewportSize(croppedImg.shape[1],
                                         croppedImg.shape[0])

            pred_meshes = {'ver': pred_vert_vis, 'f': smpl.faces}
            v = pred_meshes['ver']
            f = pred_meshes['f']

            #Visualize in the original image space
            renderer.set_mesh(v, f)
            renderer.showBackground(True)
            renderer.setWorldCenterBySceneCenter()
            renderer.setCameraViewMode("cam")

            renderer.setViewportSize(croppedImg.shape[1], croppedImg.shape[0])
            renderer.display()
            renderImg = renderer.get_screen_color_ibgr()
            viewer2D.ImShow(renderImg, waitTime=1)

        # Visualization Mesh on side view
        if True:
            renderer.showBackground(False)
            renderer.setWorldCenterBySceneCenter()
            renderer.setCameraViewMode("side")

            renderer.setViewportSize(croppedImg.shape[1], croppedImg.shape[0])
            renderer.display()
            sideImg = renderer.get_screen_color_ibgr()  #Overwite on rawImg
            viewer2D.ImShow(sideImg, waitTime=1)

            sideImg = cv2.resize(sideImg,
                                 (renderImg.shape[1], renderImg.shape[0]))

        #Visualize camera view and side view
        saveImg = np.concatenate((renderImg, sideImg), axis=1)

        if bStopForEachSample:
            viewer2D.ImShow(
                saveImg, waitTime=0
            )  #waitTime=0 means that it will wait for any key pressed
        else:
            viewer2D.ImShow(saveImg, waitTime=1)

        #Save the rendered image to files
        if False:
            if os.path.exists(args.render_dir) == False:
                os.mkdir(args.render_dir)
            render_output_path = args.render_dir + '/render_{:08d}.jpg'.format(
                idx)
            print(f"Save to {render_output_path}")
            cv2.imwrite(render_output_path, saveImg)