def bisection(): # initial parameters for bisection scheme size = math.pi / (2.0 * params_base['width']) pnt0 = 0.0 pntm = pnt0 + size pnt1 = pnt0 + 1.9 * size # the bisection scheme tol = 1.0e-08 while size > tol: val0 = ek_common.solve( pnt0, params_base['width'], params_base['bjerrum_length'], params_base['sigma'], params_base['valency']) val1 = ek_common.solve( pnt1, params_base['width'], params_base['bjerrum_length'], params_base['sigma'], params_base['valency']) valm = ek_common.solve( pntm, params_base['width'], params_base['bjerrum_length'], params_base['sigma'], params_base['valency']) if (val0 < 0.0 and val1 > 0.0): if valm < 0.0: pnt0 = pntm size = size / 2.0 pntm = pnt0 + size else: pnt1 = pntm size = size / 2.0 pntm = pnt1 - size elif (val0 > 0.0 and val1 < 0.0): if valm < 0.0: pnt1 = pntm size = size / 2.0 pntm = pnt1 - size else: pnt0 = pntm size = size / 2.0 pntm = pnt0 + size else: sys.exit("Bisection method fails:\n" "Tuning of domain boundaries may be required.") return pntm
def test(self): system = self.es pi = math.pi box_z = 4 box_y = 4 width = 32 padding = 6 box_x = width + 2 * padding # Set the electrokinetic parameters agrid = 0.5 dt = 1.0 / 5.0 force = 0.13 sigma = -0.03 viscosity_kinematic = 1.0 friction = 1.0 temperature = 2.3 bjerrum_length = 0.7 temperature_LB = agrid * agrid / (3.0 * dt * dt) kB_LB = 1.0 cs_squared = (1.0 / 3.0) * (agrid * agrid / (dt * dt)) system.box_l = [box_x, box_y, box_z] # Set the simulation parameters system.time_step = dt system.cell_system.skin = 0.1 system.thermostat.turn_off() integration_length = 1500 # Set up the charged and neutral species density_water = 26.15 density_counterions = -2.0 * float(sigma) / float(width) valency = 1.0 # Set up the (LB) electrokinetics fluid ek = espressomd.electrokinetics.Electrokinetics( agrid=agrid, lb_density=density_water, viscosity=viscosity_kinematic, friction=friction, T=temperature, prefactor=bjerrum_length * temperature, stencil="nonlinear") counterions = espressomd.electrokinetics.Species( density=density_counterions, D=0.3, valency=valency, ext_force_density=[0, force, 0]) ek.add_species(counterions) # Set up the walls confining the fluid and carrying charge ek_wall1 = espressomd.ekboundaries.EKBoundary( charge_density=sigma / (padding), shape=espressomd.shapes.Wall(normal=[1, 0, 0], dist=padding)) system.ekboundaries.add(ek_wall1) ek_wall2 = espressomd.ekboundaries.EKBoundary( charge_density=sigma / (padding), shape=espressomd.shapes.Wall(normal=[-1, 0, 0], dist=-(padding + width))) system.ekboundaries.add(ek_wall2) system.actors.add(ek) # Integrate the system system.integrator.run(integration_length) # compare the various quantities to the analytic results total_velocity_difference = 0.0 total_density_difference = 0.0 total_pressure_difference_xx = 0.0 total_pressure_difference_yy = 0.0 total_pressure_difference_zz = 0.0 total_pressure_difference_xy = 0.0 total_pressure_difference_yz = 0.0 total_pressure_difference_xz = 0.0 # initial parameters for bisection scheme size = pi / (2.0 * width) pnt0 = 0.0 pntm = pnt0 + size pnt1 = pnt0 + 1.9 * size # the bisection scheme tol = 1.0e-08 while (size > tol): val0 = ek_common.solve(pnt0, width, bjerrum_length, sigma, valency) val1 = ek_common.solve(pnt1, width, bjerrum_length, sigma, valency) valm = ek_common.solve(pntm, width, bjerrum_length, sigma, valency) if (val0 < 0.0 and val1 > 0.0): if (valm < 0.0): pnt0 = pntm size = size / 2.0 pntm = pnt0 + size else: pnt1 = pntm size = size / 2.0 pntm = pnt1 - size elif (val0 > 0.0 and val1 < 0.0): if (valm < 0.0): pnt1 = pntm size = size / 2.0 pntm = pnt1 - size else: pnt0 = pntm size = size / 2.0 pntm = pnt0 + size else: sys.exit( "Bisection method fails:\nTuning of domain boundaries may be required." ) # obtain the desired xi value xi = pntm for i in range(int(box_x / agrid)): if (i * agrid >= padding and i * agrid < box_x - padding): xvalue = i * agrid - padding position = i * agrid - padding - width / 2.0 + agrid / 2.0 # density measured_density = counterions[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].density calculated_density = ek_common.density(position, xi, bjerrum_length) density_difference = abs(measured_density - calculated_density) total_density_difference = total_density_difference + \ density_difference # velocity measured_velocity = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].velocity[1] calculated_velocity = ek_common.velocity( position, xi, width, bjerrum_length, force, viscosity_kinematic, density_water) velocity_difference = abs(measured_velocity - calculated_velocity) total_velocity_difference = total_velocity_difference + \ velocity_difference # diagonal pressure tensor measured_pressure_xx = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].pressure[(0, 0)] calculated_pressure_xx = ek_common.hydrostatic_pressure_non_lin( ek, position, xi, bjerrum_length, (0, 0), box_x, box_y, box_z, agrid, temperature) measured_pressure_yy = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].pressure[(1, 1)] calculated_pressure_yy = ek_common.hydrostatic_pressure_non_lin( ek, position, xi, bjerrum_length, (1, 1), box_x, box_y, box_z, agrid, temperature) measured_pressure_zz = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].pressure[(2, 2)] calculated_pressure_zz = ek_common.hydrostatic_pressure_non_lin( ek, position, xi, bjerrum_length, (2, 2), box_x, box_y, box_z, agrid, temperature) pressure_difference_xx = abs(measured_pressure_xx - calculated_pressure_xx) pressure_difference_yy = abs(measured_pressure_yy - calculated_pressure_yy) pressure_difference_zz = abs(measured_pressure_zz - calculated_pressure_zz) total_pressure_difference_xx = total_pressure_difference_xx + \ pressure_difference_xx total_pressure_difference_yy = total_pressure_difference_yy + \ pressure_difference_yy total_pressure_difference_zz = total_pressure_difference_zz + \ pressure_difference_zz # xy component pressure tensor measured_pressure_xy = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].pressure[(0, 1)] calculated_pressure_xy = ek_common.pressure_tensor_offdiagonal( position, xi, bjerrum_length, force) pressure_difference_xy = abs(measured_pressure_xy - calculated_pressure_xy) total_pressure_difference_xy = total_pressure_difference_xy + \ pressure_difference_xy # yz component pressure tensor measured_pressure_yz = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].pressure[(1, 2)] calculated_pressure_yz = 0.0 pressure_difference_yz = abs(measured_pressure_yz - calculated_pressure_yz) total_pressure_difference_yz = total_pressure_difference_yz + \ pressure_difference_yz # xz component pressure tensor measured_pressure_xz = ek[i, int(box_y / (2 * agrid)), int(box_z / (2 * agrid))].pressure[(0, 2)] calculated_pressure_xz = 0.0 pressure_difference_xz = abs(measured_pressure_xz - calculated_pressure_xz) total_pressure_difference_xz = total_pressure_difference_xz + \ pressure_difference_xz total_density_difference = agrid * total_density_difference / width total_velocity_difference = agrid * total_velocity_difference / width total_pressure_difference_xx = agrid * \ total_pressure_difference_xx / width total_pressure_difference_yy = agrid * \ total_pressure_difference_yy / width total_pressure_difference_zz = agrid * \ total_pressure_difference_zz / width total_pressure_difference_xy = agrid * \ total_pressure_difference_xy / width total_pressure_difference_yz = agrid * \ total_pressure_difference_yz / width total_pressure_difference_xz = agrid * \ total_pressure_difference_xz / width self.assertLess(total_density_difference, 1.0e-04, "Density accuracy not achieved") self.assertLess(total_velocity_difference, 1.0e-04, "Velocity accuracy not achieved") self.assertLess(total_pressure_difference_xx, 1.0e-04, "Pressure accuracy xx component not achieved") self.assertLess(total_pressure_difference_yy, 1.0e-04, "Pressure accuracy yy component not achieved") self.assertLess(total_pressure_difference_zz, 1.0e-04, "Pressure accuracy zz component not achieved") self.assertLess(total_pressure_difference_xy, 1.0e-04, "Pressure accuracy xy component not achieved") self.assertLess(total_pressure_difference_yz, 1.0e-04, "Pressure accuracy yz component not achieved") self.assertLess(total_pressure_difference_xz, 1.0e-04, "Pressure accuracy xz component not achieved")