Ejemplo n.º 1
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        domain_size = np.prod(self.domain_shape)

        # Start with a uniform estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W = get_matrix(W)
        if not isinstance(W, np.ndarray):
            W = W.toarray()

        measuredQueries = []
        mult_weight = inference.MultiplicativeWeights(updateRounds = self.update_rounds)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)
            # SW

            worst_approx = pselection.WorstApprox(W,
                                                  measuredQueries,
                                                  x_hat,
                                                  eps_round * self.ratio,
                                                  'EXPONENTIAL')
            M = worst_approx.select(x, prng)
            measuredQueries.append(M.mwem_index)
            if not isinstance(M, np.ndarray):
                M = M.toarray()

            # LM 
            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            M_history = np.vstack([M_history, M])
            y_history.extend(y)

            # MW
            if self.use_history:
                x_hat = mult_weight.infer(M_history, y_history, x_hat)
            else:
                x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat
Ejemplo n.º 2
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        domain_size = np.prod(self.domain_shape)

        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W = get_matrix(W)

        W_partial = sparse.csr_matrix(W.shape)
        mult_weight = inference.MultiplicativeWeights(updateRounds = self.update_rounds)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)
            # SW

            worst_approx = pselection.WorstApprox(sparse.csr_matrix(W),
                                                  W_partial,
                                                  x_hat,
                                                  eps_round * self.ratio,
                                                  'EXPONENTIAL')
            W_next = worst_approx.select(x, prng)
            M = support.extract_M(W_next)
            W_partial += W_next

            # LM 
            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            M_history = sparse.vstack([M_history, M])
            y_history.extend(y)

            # MW
            if self.use_history:
                x_hat = mult_weight.infer(M_history, y_history, x_hat)
            else:
                x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat
Ejemplo n.º 3
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        domain_size = np.prod(self.domain_shape)
        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)
        
        measuredQueries = []
        mult_weight = inference.MultiplicativeWeights(updateRounds = self.update_rounds)

        M_history = []
        y_history = []

        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)
            # SW + SH2


            worst_approx = pselection.WorstApprox(W,
                                                  measuredQueries, 
                                                  x_hat, 
                                                  eps_round * self.ratio)

            W_next = worst_approx.select(x, prng)
            measuredQueries.append(W_next.mwem_index)
            M = selection.AddEquiWidthIntervals(W_next, i).select()

            # LM 
            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            M_history.append(M) 
            y_history.append(y)

            # MW
            if self.use_history:
                x_hat = mult_weight.infer(M_history, y_history, x_hat)
            else:
                x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat
Ejemplo n.º 4
0
    def Run(self, W, x, eps, seed):
        prng = np.random.RandomState(seed)
        x_hat = prng.rand(*x.shape)
        W_partial = sparse.csr_matrix(W.get_matrix().shape)
        mult_weight = inference.MultiplicativeWeights()

        measured_queries = []
        for i in range(1, self.rounds + 1):
            eps_round = eps / float(self.rounds)

            # SW + SH2
            worst_approx = pselection.WorstApprox(
                sparse.csr_matrix(W.get_matrix()), W_partial, x_hat,
                eps_round * self.ratio)

            W_next = worst_approx.select(x, prng)
            M = selection.AddEquiWidthIntervals(W_next, i).select()

            W_partial += W_next
            laplace = measurement.Laplace(M, eps * (1 - self.ratio))
            y = laplace.measure(x, prng)
            x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat