Ejemplo n.º 1
0
    def Run(self, W, x, eps):
        domain_size = np.prod(self.domain_shape)
        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W_partial = sparse.csr_matrix(get_matrix(W).shape)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds + 1):
            eps_round = eps / float(self.rounds)
            # SW + SH2
            W_next = x.worst_approx(sparse.csr_matrix(get_matrix(W)),
                                    W_partial, x_hat, eps_round * self.ratio)
            M = selection.AddEquiWidthIntervals(W_next, i).select()

            W_partial += W_next
            y = x.laplace(M, eps_round * (1-self.ratio))\

            # default use history
            M_history = sparse.vstack([M_history, M])
            y_history.extend(y)

            if self.total_noise_scale != 0:
                total_query = sparse.csr_matrix([1] * domain_size)
                noise_scale = laplace_scale_factor(
                    M, eps_round * (1 - self.ratio))

                x_hat = non_negative_least_squares(
                    [total_query, M_history], [[self.data_scale], y_history],
                    [self.total_noise_scale, noise_scale])
            else:
                x_hat = non_negative_least_squares(M, y)

        return x_hat
Ejemplo n.º 2
0
    def Run(self, W, x, eps):
        if self.workload_based:
            x, W = workload_based(x=x, W=W)

        W = get_matrix(W)

        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain_shape into 1d
            hilbert_mapping = hilbert(self.domain_shape)

            x = x.reduce_by_partition(hilbert_mapping)

            W = W * support.expansion_matrix(hilbert_mapping)

        mapping = x.dawa(self.ratio, self.approx, eps)
        x_bar = x.reduce_by_partition(mapping)
        W_bar = get_matrix(W) * support.expansion_matrix(mapping)
        M_bar = greedyH((len(set(mapping)), ), W_bar)
        y = x_bar.laplace(M_bar, eps * (1 - self.ratio))
        x_bar_hat = least_squares(M_bar, y)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        if len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_hat

        return x_hat
Ejemplo n.º 3
0
    def Run(self, W, x, eps):
        domain_size = np.prod(self.domain_shape)

        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W_partial = sparse.csr_matrix(get_matrix(W).shape)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds + 1):
            eps_round = eps / float(self.rounds)

            W_next = x.worst_approx(sparse.csr_matrix(get_matrix(W)),
                                    W_partial, x_hat, eps_round * self.ratio,
                                    'EXPONENTIAL')
            M = support.extract_M(W_next)
            W_partial += W_next

            y = x.laplace(M, eps_round * (1 - self.ratio))

            M_history = sparse.vstack([M_history, M])
            y_history.extend(y)

            if self.use_history:
                x_hat = multiplicative_weights(
                    M_history,
                    y_history,
                    x_hat,
                    update_rounds=self.update_rounds)
            else:
                x_hat = multiplicative_weights(
                    M, y, x_hat, update_rounds=self.update_rounds)

        return x_hat
Ejemplo n.º 4
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)
            self.domain_shape = x.shape


        if len(self.domain_shape) == 2:
            # apply hilbert transform to convert 2d domain into 1d
            hilbert_mapping = mapper.HilbertTransform(self.domain_shape).mapping()
            domain_reducer = transformation.ReduceByPartition(hilbert_mapping)

            x = domain_reducer.transform(x)

            W = get_matrix(W)
            W = W * support.expansion_matrix(hilbert_mapping)

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)

        elif len(self.domain_shape) == 1:

            W = get_matrix(W)
            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x, prng)


        reducer = transformation.ReduceByPartition(mapping)
        x_bar = reducer.transform(x)
        W_bar = W * support.expansion_matrix(mapping)

        M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
        if not isinstance(M_bar, np.ndarray):
            M_bar = M_bar.toarray()
        y = measurement.Laplace(M_bar, eps*(1-self.ratio)).measure(x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y)

        x_bar_hat_exp = support.expansion_matrix(mapping) * x_bar_hat


        if len(self.domain_shape) == 1:
            return x_bar_hat_exp
        elif len(self.domain_shape) == 2:
            return support.expansion_matrix(hilbert_mapping) * x_bar_hat_exp
Ejemplo n.º 5
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)

        # Orange AHPparition(PA) operator in paper can be expressed
        # as the following sequence of simpler opeartors
        M = selection.Identity(x.shape).select()
        y = measurement.Laplace(M, self.ratio * eps).measure(x, prng)
        xest = inference.AHPThresholding(self.eta, self.ratio).infer(M, y, eps)
        mapping = mapper.AHPCluster(xest, (1-self.ratio) * eps).mapping() 

        # TR
        reducer = transformation.ReduceByPartition(mapping)

        x_bar = reducer.transform(x)
        # SI LM LS
        M_bar = selection.Identity(x_bar.shape).select()
        y_bar = measurement.Laplace(M_bar, eps*(1-self.ratio)).measure(x_bar, prng)
        x_bar_hat = inference.LeastSquares().infer(M_bar, y_bar)
        x_hat = support.expansion_matrix(mapping) * x_bar_hat

        return x_hat
Ejemplo n.º 6
0
    def Run(self, W, x, eps):
        striped_mapping = striped(self.domain_shape, self.stripe_dim)
        x_sub_list = x.split_by_partition(striped_mapping)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))
        for i in group_idx:
            x_i = x_sub_list[group_idx.index(i)]
            P_i = support.projection_matrix(striped_mapping, i)
            W_i = get_matrix(W) * P_i.T

            M_bar = hb((P_i.shape[0], ))
            y_i = x_i.laplace(M_bar, eps)

            M_i = M_bar * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(laplace_scale_factor(M_bar, eps))

        x_hat = least_squares(Ms, ys, scale_factors)

        return x_hat
Ejemplo n.º 7
0
    def Run(self, W, x, eps):
        W = get_matrix(W)
        striped_mapping = striped(self.domain_shape, self.stripe_dim)
        x_sub_list = x.split_by_partition(striped_mapping)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        for i in group_idx:
            x_i = x_sub_list[group_idx.index(i)]
            P_i = support.projection_matrix(striped_mapping, i)
            W_i = W * P_i.T

            mapping = x_i.dawa(self.ratio, self.approx, eps)

            x_bar = x_i.reduce_by_partition(mapping)
            W_bar = W_i * support.expansion_matrix(mapping)
            M_bar = greedyH((len(set(mapping)), ), W_bar)
            y_i = x_bar.laplace(M_bar, eps * (1 - self.ratio))
            W_bar = W_i * support.expansion_matrix(mapping)

            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(laplace_scale_factor(M_bar, eps))

        x_hat = least_squares(Ms, ys, scale_factors)

        return x_hat
Ejemplo n.º 8
0
    def Run(self, W, x, eps, seed):
        prng = np.random.RandomState(seed)
        W = get_matrix(W)
        M = selection.GreedyH(x.shape, W).select()
        y  = measurement.Laplace(M, eps).measure(x, prng)
        x_hat = inference.LeastSquares().infer(M, y)

        return x_hat
Ejemplo n.º 9
0
def workload_based(x, W=None):
    '''workload-based domain reduction
    '''
    mapping = mapper.WorkloadBased(W).mapping()
    x = x.reduce_by_partition(mapping)
    if W is not None:
        W = support.get_matrix(W)
        W = W * support.expansion_matrix(mapping)
    return x, W
Ejemplo n.º 10
0
    def Run(self, W, x, eps, seed):
        domain_dimension = len(self.domain_shape)
        eps_share = util.old_div(float(eps), domain_dimension)

        x = x.flatten()
        prng = np.random.RandomState(seed)
        
        Ms = []
        ys = []
        scale_factors = []
        for i in range(domain_dimension):
            # Reducde domain to get marginals
            marginal_mapping = mapper.MarginalPartition(
                domain_shape=self.domain_shape, proj_dim=i).mapping()
            reducer = transformation.ReduceByPartition(marginal_mapping)
            x_i = reducer.transform(x)

            if self.domain_shape[i] < 50:
                # run identity subplan
                M_i = selection.Identity(x_i.shape).select()
                y_i = measurement.Laplace(M_i, eps_share).measure(x_i, prng)
                noise_scale_factor = laplace_scale_factor(
                    M_i, eps_share)
                
            else:
                # run dawa subplan
                W = get_matrix(W)

                W_i = W * support.expansion_matrix(marginal_mapping)

                dawa = pmapper.Dawa(eps_share, self.ratio, self.approx)
                mapping = dawa.mapping(x_i, prng)

                reducer = transformation.ReduceByPartition(mapping)
                x_bar = reducer.transform(x_i)
                W_bar = W_i * support.expansion_matrix(mapping)

                M_bar = selection.GreedyH(x_bar.shape, W_bar).select()
                y_i = measurement.Laplace(
                    M_bar, eps_share * (1 - self.ratio)).measure(x_bar, prng)

                noise_scale_factor = laplace_scale_factor(
                    M_bar, eps_share * (1 - self.ratio))

                # expand the dawa reduction
                M_i = M_bar * support.reduction_matrix(mapping)

            MM = M_i * support.reduction_matrix(marginal_mapping)
            Ms.append(MM)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares(method='lsmr').infer(Ms, ys, scale_factors)

        return x_hat  
Ejemplo n.º 11
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)

        domain_size = np.prod(self.domain_shape)
        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)
        
        W = get_matrix(W)
        if not isinstance(W, np.ndarray):
            W = W.toarray()
        measuredQueries = []

        nnls = inference.NonNegativeLeastSquares(method='new')
        
        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)

            # SW + SH2
            worst_approx = pselection.WorstApprox(W,
                                                  measuredQueries,
                                                  x_hat, 
                                                  eps_round * self.ratio)

            W_next = worst_approx.select(x, prng)
            measuredQueries.append(W_next.mwem_index)
            M = selection.AddEquiWidthIntervals(W_next, i).select()

            if not isinstance(M, np.ndarray):
                M = M.toarray()
                
            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            # default use history
            M_history = np.vstack([M_history, M])
            y_history.extend(y)
            
            if self.total_noise_scale != 0:
                total_query = sparse.csr_matrix([1]*domain_size)
                noise_scale = laplace_scale_factor(M, eps_round * (1-self.ratio))
                x_hat = nnls.infer([total_query, M_history], [[self.data_scale], y_history], [self.total_noise_scale, noise_scale])
            else:
                x_hat = nnls.infer(M, y)

        return x_hat
Ejemplo n.º 12
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()   
        prng = np.random.RandomState(seed)
        if self.workload_based:
            W = get_matrix(W)
            mapping = mapper.WorkloadBased(W).mapping() 
            reducer = transformation.ReduceByPartition(mapping)
            x = reducer.transform(x)
            # Reduce workload
            # W = support.reduce_queries(mapping, W)
            W = W * support.expansion_matrix(mapping)

        M = selection.Identity(x.shape).select()
        y = measurement.Laplace(M, eps).measure(x, prng)
        x_hat = inference.LeastSquares().infer(M, y)

        return x_hat
Ejemplo n.º 13
0
    def Run(self, W, x, eps):
        domain_dimension = len(self.domain_shape)
        eps_share = util.old_div(float(eps), domain_dimension)

        Ms = []
        ys = []
        scale_factors = []
        for i in range(domain_dimension):
            # Reducde domain to get marginals
            marginal_mapping = marginal_partition(self.domain_shape, i)

            x_i = x.reduce_by_partition(marginal_mapping)

            if self.domain_shape[i] < 50:
                # run identity subplan

                M_i = identity((self.domain_shape[i], ))
                y_i = x_i.laplace(M_i, eps_share)
                noise_scale_factor = laplace_scale_factor(M_i, eps_share)

            else:
                # run dawa subplan
                W = get_matrix(W)
                W_i = W * support.expansion_matrix(marginal_mapping)

                mapping = x_i.dawa(self.ratio, self.approx, eps_share)
                x_bar = x_i.reduce_by_partition(mapping)
                W_bar = W_i * support.expansion_matrix(mapping)

                M_bar = greedyH((len(set(mapping)), ), W_bar)
                y_i = x_bar.laplace(M_bar, eps_share * (1 - self.ratio))

                noise_scale_factor = laplace_scale_factor(
                    M_bar, eps_share * (1 - self.ratio))

                # expand the dawa reduction
                M_i = M_bar * support.reduction_matrix(mapping)

            MM = M_i * support.reduction_matrix(marginal_mapping)
            Ms.append(MM)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = least_squares(Ms, ys, scale_factors)

        return x_hat
Ejemplo n.º 14
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()            
        prng = np.random.RandomState(seed)

        striped_mapping = mapper.Striped(self.domain, self.stripe_dim).mapping()
        x_sub_list = meta.SplitByPartition(striped_mapping).transform(x)

        Ms = []
        ys = []
        scale_factors = []
        group_idx = sorted(set(striped_mapping))

        W = get_matrix(W)

        for i in group_idx: 
            x_i = x_sub_list[group_idx.index(i)]
            P_i = support.projection_matrix(striped_mapping, i)
            W_i = W * P_i.T

            dawa = pmapper.Dawa(eps, self.ratio, self.approx)
            mapping = dawa.mapping(x_i, prng)
            reducer = transformation.ReduceByPartition(mapping)
            x_bar = reducer.transform(x_i)
            W_bar = W_i * support.expansion_matrix(mapping)

            M_bar = selection.GreedyH(x_bar.shape, W_bar).select()

            if not isinstance(M_bar, np.ndarray):
                M_bar = M_bar.toarray()

            y_i = measurement.Laplace(
                M_bar, eps * (1 - self.ratio)).measure(x_bar, prng)

            noise_scale_factor = laplace_scale_factor(
                M_bar, eps * (1 - self.ratio))

            M_i = (M_bar * support.reduction_matrix(mapping)) * P_i

            Ms.append(M_i)
            ys.append(y_i)
            scale_factors.append(noise_scale_factor)

        x_hat = inference.LeastSquares().infer(Ms, ys, scale_factors)

        return x_hat
Ejemplo n.º 15
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        domain_size = np.prod(self.domain_shape)

        # Start with a uniform estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W = get_matrix(W)
        if not isinstance(W, np.ndarray):
            W = W.toarray()

        measuredQueries = []
        mult_weight = inference.MultiplicativeWeights(updateRounds = self.update_rounds)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)
            # SW

            worst_approx = pselection.WorstApprox(W,
                                                  measuredQueries,
                                                  x_hat,
                                                  eps_round * self.ratio,
                                                  'EXPONENTIAL')
            M = worst_approx.select(x, prng)
            measuredQueries.append(M.mwem_index)
            if not isinstance(M, np.ndarray):
                M = M.toarray()

            # LM 
            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            M_history = np.vstack([M_history, M])
            y_history.extend(y)

            # MW
            if self.use_history:
                x_hat = mult_weight.infer(M_history, y_history, x_hat)
            else:
                x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat
Ejemplo n.º 16
0
    def Run(self, W, x, eps, seed):
        prng = np.random.RandomState(seed)
        domain_size = np.prod(self.domain_shape)
        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)
        
        W = get_matrix(W)

        W_partial = sparse.csr_matrix(W.shape)
        nnls = inference.NonNegativeLeastSquares()

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)

            # SW + SH2
            worst_approx = pselection.WorstApprox(sparse.csr_matrix(W),
                                                  W_partial, 
                                                  x_hat, 
                                                  eps_round * self.ratio)

            W_next = worst_approx.select(x, prng)
            M = selection.AddEquiWidthIntervals(W_next, i).select()

            W_partial += W_next

            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            # default use history
            M_history = sparse.vstack([M_history, M])
            y_history.extend(y)
            
            if self.total_noise_scale != 0:
                total_query = sparse.csr_matrix([1]*domain_size)
                noise_scale = laplace_scale_factor(M, eps_round * (1-self.ratio))
                x_hat = nnls.infer([total_query, M_history], [[self.data_scale], y_history], [self.total_noise_scale, noise_scale])
            else:
                x_hat = nnls.infer(M, y)

        return x_hat
Ejemplo n.º 17
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        domain_size = np.prod(self.domain_shape)

        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W = get_matrix(W)

        W_partial = sparse.csr_matrix(W.shape)
        mult_weight = inference.MultiplicativeWeights(updateRounds = self.update_rounds)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds+1):
            eps_round = eps / float(self.rounds)
            # SW

            worst_approx = pselection.WorstApprox(sparse.csr_matrix(W),
                                                  W_partial,
                                                  x_hat,
                                                  eps_round * self.ratio,
                                                  'EXPONENTIAL')
            W_next = worst_approx.select(x, prng)
            M = support.extract_M(W_next)
            W_partial += W_next

            # LM 
            laplace = measurement.Laplace(M, eps_round * (1-self.ratio))
            y = laplace.measure(x, prng)

            M_history = sparse.vstack([M_history, M])
            y_history.extend(y)

            # MW
            if self.use_history:
                x_hat = mult_weight.infer(M_history, y_history, x_hat)
            else:
                x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat
Ejemplo n.º 18
0
    def Run(self, W, x, eps, seed):
        x = x.flatten()
        prng = np.random.RandomState(seed)
        domain_size = np.prod(self.domain_shape)
        # Start with a unifrom estimation of x
        x_hat = np.array([self.data_scale / float(domain_size)] * domain_size)

        W = get_matrix(W)

        measuredQueries = []
        mult_weight = inference.MultiplicativeWeights(
            updateRounds=self.update_rounds)

        M_history = np.empty((0, domain_size))
        y_history = []
        for i in range(1, self.rounds + 1):
            eps_round = eps / float(self.rounds)
            # SW + SH2
            worst_approx = pselection.WorstApprox(W, measuredQueries, x_hat,
                                                  eps_round * self.ratio)

            W_next = worst_approx.select(x, prng)
            measuredQueries.append(W_next.mwem_index)
            M = selection.AddEquiWidthIntervals(W_next, i).select()
            # LM
            laplace = measurement.Laplace(M, eps_round * (1 - self.ratio))
            y = laplace.measure(x, prng)

            M_history = sparse.vstack([M_history, M])
            y_history.extend(y)

            # MW
            if self.use_history:
                x_hat = mult_weight.infer(M_history, y_history, x_hat)
            else:
                x_hat = mult_weight.infer(M, y, x_hat)

        return x_hat
Ejemplo n.º 19
0
    def std_project_workload(self, w, mapping, groupID):

        P_i = support.projection_matrix(mapping, groupID)
        w = get_matrix(w)
        return w * P_i.T
Ejemplo n.º 20
0
    def Run(self, W, x, eps):
        M = greedyH((self.n, ), get_matrix(W))
        y = x.laplace(M, eps)
        x_hat = least_squares(M, y)

        return x_hat