Ejemplo n.º 1
0
    def apply_filters(self, request, applicable_filters):
        """Implement advanced filters.

        - Implement 'groups' filter.
        - Implement 'languages' filter.
        - Implement 'skills' filter.

        """
        if (request.GET.get('restricted', False)
                and 'email__text' not in applicable_filters
                and len(applicable_filters) != 1):
            raise ImmediateHttpResponse(response=http.HttpForbidden())

        if request.GET.get('restricted', False):
            applicable_filters.append(F(allows_community_sites=True))

        mega_filter = F()
        for filter in applicable_filters:
            mega_filter &= filter

        return S(UserProfile).filter(mega_filter)
Ejemplo n.º 2
0
def analytics_hourly_histogram(request):
    """Shows an hourly histogram for the last 5 days of all responses"""
    template = 'analytics/analyzer/hourly_histogram.html'

    date_end = smart_date(request.GET.get('date_end', None), fallback=None)

    if date_end is None:
        date_end = date.today()

    date_start = date_end - timedelta(days=5)

    search = ResponseMappingType.search()
    filters = F(created__gte=date_start, created__lte=date_end)
    search.filter(filters)

    hourly_histogram = search.facet_raw(
        hourly={
            'date_histogram': {
                'interval': 'hour',
                'field': 'created'
            },
            'facet_filter': search._process_filters(filters.filters)
        }).facet_counts()

    hourly_data = dict(
        (p['time'], p['count']) for p in hourly_histogram['hourly'])

    hour = 60 * 60 * 1000.0
    zero_fill(date_start, date_end, [hourly_data], spacing=hour)

    # FIXME: This is goofy. After zero_fill, we end up with a bunch of
    # trailing zeros for reasons I don't really understand, so instead
    # of fixing that, I'm just going to remove them here.
    hourly_data = sorted(hourly_data.items())
    while hourly_data and hourly_data[-1][1] == 0:
        hourly_data.pop(-1)

    histogram = [
        {
            'label': 'Hourly',
            'name': 'hourly',
            'data': hourly_data
        },
    ]

    return render(request, template, {
        'histogram': histogram,
        'start_date': date_start,
        'end_date': date_end
    })
Ejemplo n.º 3
0
 def test_filter_not(self):
     eq_(len(S(FakeDjangoMappingType).filter(~F(tag='awesome'))), 2)
     eq_(
         len(
             S(FakeDjangoMappingType).filter(~(F(tag='boring')
                                               | F(tag='boat')))), 3)
     eq_(
         len(
             S(FakeDjangoMappingType).filter(~F(tag='boat')).filter(~F(
                 foo='bar'))), 3)
     eq_(len(S(FakeDjangoMappingType).filter(~F(tag='boat', foo='barf'))),
         5)
Ejemplo n.º 4
0
    def from_search(cls, cat=None, region=None, gaia=False):
        filters = dict(type=amo.ADDON_WEBAPP,
                       status=amo.STATUS_PUBLIC,
                       is_disabled=False)

        if cat:
            filters.update(category=cat.id)

        srch = S(cls).query(**filters)
        if region:
            excluded = cls.get_excluded_in(region)
            if excluded:
                srch = srch.filter(~F(id__in=excluded))

        if waffle.switch_is_active('disabled-payments') or not gaia:
            srch = srch.filter(premium_type__in=amo.ADDON_FREES, price=0)

        return srch
Ejemplo n.º 5
0
    def queryset(self):
        res = SearchSuggestionsAjax.queryset(self)
        if self.category:
            res = res.filter(category__in=[self.category])
        if waffle.switch_is_active('disabled-payments'):
            res = res.filter(premium_type__in=amo.ADDON_FREES, price=0)

        region = getattr(self.request, 'REGION', mkt.regions.WORLDWIDE)
        if region:
            excluded = Webapp.get_excluded_in(region)
            if excluded:
                if isinstance(res, S):
                    # ES? Do fanciness.
                    return res.filter(~F(id__in=excluded))
                else:
                    # Django ORM? Do an `exclude`.
                    return res.exclude(id__in=excluded)

        if getattr(self.request, 'MOBILE', False):
            res = res.filter(device=amo.DEVICE_MOBILE.id)

        return res
Ejemplo n.º 6
0
 def test_filter_complicated(self):
     eq_(
         len(
             S(FakeDjangoMappingType).filter(
                 F(tag='awesome', foo='bar') | F(tag='boring'))), 2)
Ejemplo n.º 7
0
 def test_filter_or(self):
     eq_(
         len(
             S(FakeDjangoMappingType).filter(
                 F(tag='awesome') | F(tag='boat'))), 4)
Ejemplo n.º 8
0
 def test_filter(self):
     eq_(len(S(FakeDjangoMappingType).filter(tag='awesome')), 3)
     eq_(len(S(FakeDjangoMappingType).filter(F(tag='awesome'))), 3)
Ejemplo n.º 9
0
 def test_filter_empty_f(self):
     eq_(len(S(FakeDjangoMappingType).filter(F() | F(tag='awesome'))), 3)
     eq_(len(S(FakeDjangoMappingType).filter(F() & F(tag='awesome'))), 3)
     eq_(len(S(FakeDjangoMappingType).filter(F() | F() | F(tag='awesome'))),
         3)
     eq_(len(S(FakeDjangoMappingType).filter(F() & F() & F(tag='awesome'))),
         3)
     eq_(len(S(FakeDjangoMappingType).filter(F())), 5)
Ejemplo n.º 10
0
def dashboard(request, template):
    output_format = request.GET.get('format', None)
    page = smart_int(request.GET.get('page', 1), 1)

    # Note: If we add additional querystring fields, we need to add
    # them to generate_dashboard_url.
    search_happy = request.GET.get('happy', None)
    search_platform = request.GET.get('platform', None)
    search_locale = request.GET.get('locale', None)
    search_product = request.GET.get('product', None)
    search_version = request.GET.get('browser_version', None)
    search_query = request.GET.get('q', None)
    search_date_start = smart_datetime(request.GET.get('date_start', None),
                                       fallback=None)
    search_date_end = smart_datetime(request.GET.get('date_end', None),
                                     fallback=None)
    selected = request.GET.get('selected', None)

    current_search = {'page': page}

    search = ResponseMappingType.search()
    f = F()
    # If search happy is '0' or '1', set it to False or True, respectively.
    search_happy = {'0': False, '1': True}.get(search_happy, None)
    if search_happy in [False, True]:
        f &= F(happy=search_happy)
        current_search['happy'] = int(search_happy)
    if search_platform:
        f &= F(platform=search_platform)
        current_search['platform'] = search_platform
    if search_locale:
        f &= F(locale=search_locale)
        current_search['locale'] = search_locale
    if search_product:
        f &= F(product=search_product)
        current_search['product'] = search_product

        if search_version:
            # Note: We only filter on version if we're filtering on
            # product.
            f &= F(browser_version=search_version)
            current_search['browser_version'] = search_version

    if search_date_start is None and search_date_end is None:
        selected = '7d'

    if search_date_end is None:
        search_date_end = datetime.now()
    if search_date_start is None:
        search_date_start = search_date_end - timedelta(days=7)

    current_search['date_end'] = search_date_end.strftime('%Y-%m-%d')
    # Add one day, so that the search range includes the entire day.
    end = search_date_end + timedelta(days=1)
    # Note 'less than', not 'less than or equal', because of the added
    # day above.
    f &= F(created__lt=end)

    current_search['date_start'] = search_date_start.strftime('%Y-%m-%d')
    f &= F(created__gte=search_date_start)

    if search_query:
        fields = ['text', 'text_phrase', 'fuzzy']
        query = dict(('description__%s' % f, search_query) for f in fields)
        search = search.query(or_=query)
        current_search['q'] = search_query

    search = search.filter(f).order_by('-created')

    # If the user asked for a feed, give him/her a feed!
    if output_format == 'atom':
        return generate_atom_feed(request, search)

    elif output_format == 'json':
        return generate_json_feed(request, search)

    # Search results and pagination
    if page < 1:
        page = 1
    page_count = 20
    start = page_count * (page - 1)
    end = start + page_count

    search_count = search.count()
    opinion_page = search[start:end]

    # Navigation facet data
    facets = search.facet(
        'happy', 'platform', 'locale', 'product', 'browser_version',
        filtered=bool(f.filters))

    # This loop does two things. First it maps 'T' -> True and 'F' ->
    # False.  This is probably something EU should be doing for
    # us. Second, it restructures the data into a more convenient
    # form.
    counts = {
        'happy': {},
        'platform': {},
        'locale': {},
        'product': {},
        'browser_version': {}
    }
    for param, terms in facets.facet_counts().items():
        for term in terms:
            name = term['term']
            if name == 'T':
                name = True
            elif name == 'F':
                name = False

            counts[param][name] = term['count']

    filter_data = [
        counts_to_options(
            counts['happy'].items(),
            name='happy',
            display=_('Sentiment'),
            display_map={True: _('Happy'), False: _('Sad')},
            value_map={True: 1, False: 0},
            checked=search_happy),
        counts_to_options(
            counts['product'].items(),
            name='product',
            display=_('Product'),
            checked=search_product)
    ]
    # Only show the browser_version if we're showing a specific
    # product.
    if search_product:
        filter_data.append(
            counts_to_options(
                counts['browser_version'].items(),
                name='browser_version',
                display=_('Version'),
                checked=search_version)
        )

    filter_data.extend(
        [
            counts_to_options(
                counts['platform'].items(),
                name='platform',
                display=_('Platform'),
                checked=search_platform),
            counts_to_options(
                counts['locale'].items(),
                name='locale',
                display=_('Locale'),
                checked=search_locale,
                display_map=locale_name),
        ]
    )

    # Histogram data
    happy_data = []
    sad_data = []

    histograms = search.facet_raw(
        happy={
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': (f & F(happy=True)).filters
        },
        sad={
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': (f & F(happy=False)).filters
        },
    ).facet_counts()

    # p['time'] is number of milliseconds since the epoch. Which is
    # convenient, because that is what the front end wants.
    happy_data = dict((p['time'], p['count']) for p in histograms['happy'])
    sad_data = dict((p['time'], p['count']) for p in histograms['sad'])

    _zero_fill(search_date_start, search_date_end, [happy_data, sad_data])
    histogram = [
        {'label': _('Happy'), 'name': 'happy',
         'data': sorted(happy_data.items())},
        {'label': _('Sad'), 'name': 'sad',
         'data': sorted(sad_data.items())},
    ]

    return render(request, template, {
        'opinions': opinion_page,
        'opinion_count': search_count,
        'filter_data': filter_data,
        'histogram': histogram,
        'page': page,
        'prev_page': page - 1 if start > 0 else None,
        'next_page': page + 1 if end < search_count else None,
        'current_search': current_search,
        'selected': selected,
        'atom_url': generate_dashboard_atom_url(request)
    })
Ejemplo n.º 11
0
    def get(self, request):
        """Returns JSON feed of first 10000 results

        This feels like a duplication of the front-page dashboard search
        logic, but it's separate which allows us to handle multiple
        values.

        """
        search = models.ResponseMappingType.search()
        f = F()

        if 'happy' in request.GET:
            happy = {'0': False, '1': True}.get(request.GET['happy'], None)
            if happy is not None:
                f &= F(happy=happy)

        if 'platforms' in request.GET:
            platforms = request.GET['platforms'].split(',')
            if platforms:
                f &= F(platform__in=platforms)

        if 'locales' in request.GET:
            locales = request.GET['locales'].split(',')
            if locales:
                f &= F(locale__in=locales)

        if 'products' in request.GET:
            products = request.GET['products'].split(',')
            if products:
                f &= F(product__in=products)

                if 'versions' in request.GET:
                    versions = request.GET['versions'].split(',')
                    if versions:
                        f &= F(version__in=versions)

        date_start = smart_date(request.GET.get('date_start', None))
        date_end = smart_date(request.GET.get('date_end', None))
        delta = smart_timedelta(request.GET.get('date_delta', None))

        if delta is not None:
            if date_end is not None:
                date_start = date_end - delta
            elif date_start is not None:
                date_end = date_start + delta
            else:
                date_end = date.today()
                date_start = date_end - delta

        # We restrict public API access to the last 6 months.
        six_months_ago = date.today() - timedelta(days=180)
        if date_start:
            date_start = max(six_months_ago, date_start)
            f &= F(created__gte=date_start)
        if date_end:
            date_end = max(six_months_ago, date_end)
            f &= F(created__lte=date_end)

        search = search.filter(f)

        search_query = request.GET.get('q', None)
        if search_query is not None:
            search = search.query(description__sqs=search_query)

        # FIXME: Probably want to make this specifyable
        search = search.order_by('-created')

        # Explicitly include only publicly visible fields
        search = search.values_dict(*models.ResponseMappingType.public_fields())

        maximum = smart_int(request.GET.get('max', None))
        maximum = maximum or 1000
        maximum = min(max(1, maximum), 10000)

        responses = models.ResponseMappingType.reshape(search[:maximum])
        return rest_framework.response.Response({
            'count': len(responses),
            'results': list(responses)
        })
Ejemplo n.º 12
0
def product_dashboard_firefox(request, prod):
    # Note: Not localized because it's ultra-alpha.
    template = 'analytics/product_dashboard_firefox.html'
    current_search = {}

    search_query = request.GET.get('q', None)
    if search_query:
        current_search['q'] = search_query

    search_date_end = smart_date(
        request.GET.get('date_end', None), fallback=None)
    if search_date_end is None:
        search_date_end = date.today()
    current_search['date_end'] = search_date_end.strftime('%Y-%m-%d')

    search_date_start = smart_date(
        request.GET.get('date_start', None), fallback=None)
    if search_date_start is None:
        search_date_start = search_date_end - timedelta(days=7)
    current_search['date_start'] = search_date_start.strftime('%Y-%m-%d')

    histogram = generate_totals_histogram(
        search_date_start, search_date_end, search_query, prod)

    # FIXME: This is lame, but we need to make sure the item we're
    # looking at is the totals.
    assert histogram[1]['name'] == 'total'
    totals_sum = sum([p[1] for p in histogram[1]['data']])

    search = ResponseMappingType.search()
    if search_query:
        search = search.query(description__sqs=search_query)

    base_f = F()
    base_f &= F(product=prod.db_name)
    base_f &= F(created__gte=search_date_start)
    base_f &= F(created__lt=search_date_end)

    search = search.filter(base_f)

    # Figure out the list of platforms and versions for this range.
    plats_and_vers = (search
                      .facet('platform', 'version', size=50)
                      .facet_counts())

    # Figure out the "by platform" histogram
    platforms = [part['term'] for part in plats_and_vers['platform']]
    platform_facet = {}
    for plat in platforms:
        plat_f = base_f & F(platform=plat)
        platform_facet[plat if plat else 'unknown'] = {
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': search._process_filters(plat_f.filters)
        }

    platform_counts = search.facet_raw(**platform_facet).facet_counts()
    platforms_histogram = []
    for key in platform_counts.keys():
        data = dict((p['time'], p['count']) for p in platform_counts[key])

        sum_counts = sum([p['count'] for p in platform_counts[key]])
        if sum_counts < (totals_sum * 0.02):
            # Skip platforms where the number of responses is less than
            # 2% of the total.
            continue

        zero_fill(search_date_start, search_date_end, [data])
        platforms_histogram.append({
            'name': key,
            'label': key,
            'data': sorted(data.items()),
            'lines': {'show': True, 'fill': False},
            'points': {'show': True},
        })

    # Figure out the "by version" histogram
    versions = [part['term'] for part in plats_and_vers['version']]
    version_facet = {}
    for vers in versions:
        vers_f = base_f & F(version=vers)
        version_facet['v' + vers if vers else 'unknown'] = {
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': search._process_filters(vers_f.filters)
        }

    version_counts = search.facet_raw(**version_facet).facet_counts()
    versions_histogram = []
    for key in version_counts.keys():
        data = dict((p['time'], p['count']) for p in version_counts[key])

        sum_counts = sum([p['count'] for p in version_counts[key]])
        if sum_counts < (totals_sum * 0.02):
            # Skip versions where the number of responses is less than
            # 2% of the total.
            continue

        zero_fill(search_date_start, search_date_end, [data])
        versions_histogram.append({
            'name': key,
            'label': key,
            'data': sorted(data.items()),
            'lines': {'show': True, 'fill': False},
            'points': {'show': True},
        })

    return render(request, template, {
        'start_date': search_date_start,
        'end_date': search_date_end,
        'current_search': current_search,
        'platforms_histogram': platforms_histogram,
        'versions_histogram': versions_histogram,
        'histogram': histogram,
        'product': prod
    })
Ejemplo n.º 13
0
def generate_totals_histogram(search_date_start, search_date_end,
                              search_query, prod):
    # Note: Not localized because it's ultra-alpha.
    search_date_start = search_date_start - timedelta(days=1)

    search = ResponseMappingType.search()

    if search_query:
        search = search.query(description__sqs=search_query)

    f = F()
    f &= F(product=prod.db_name)

    f &= F(created__gte=search_date_start)
    f &= F(created__lt=search_date_end)

    happy_f = f & F(happy=True)

    totals_histogram = search.facet_raw(
        total={
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': search._process_filters(f.filters)
        },
        happy={
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': search._process_filters(happy_f.filters)
        },
    ).facet_counts()

    totals_data = dict((p['time'], p['count'])
                       for p in totals_histogram['total'])
    zero_fill(search_date_start, search_date_end, [totals_data])
    totals_data = sorted(totals_data.items())

    happy_data = dict((p['time'], p['count'])
                      for p in totals_histogram['happy'])
    zero_fill(search_date_start, search_date_end, [happy_data])
    happy_data = sorted(happy_data.items())

    up_deltas = []
    down_deltas = []
    for i, hap in enumerate(happy_data):
        if i == 0:
            continue

        yesterday = 0
        today = 0

        # Figure out yesterday and today as a percent to one
        # significant digit.
        if happy_data[i-1][1] and totals_data[i-1][1]:
            yesterday = (
                int(happy_data[i-1][1] * 1.0
                    / totals_data[i-1][1] * 1000)
                / 10.0
            )

        if happy_data[i][1] and totals_data[i][1]:
            today = (
                int(happy_data[i][1] * 1.0
                    / totals_data[i][1] * 1000)
                / 10.0
            )

        if (today - yesterday) >= 0:
            up_deltas.append((happy_data[i][0], today - yesterday))
        else:
            down_deltas.append((happy_data[i][0], today - yesterday))

    # Nix the first total because it's not in our date range
    totals_data = totals_data[1:]

    histogram = [
        {
            'name': 'zero',
            'data': [(totals_data[0][0], 0), (totals_data[-1][0], 0)],
            'yaxis': 2,
            'lines': {'show': True, 'fill': False, 'lineWidth': 1,
                      'shadowSize': 0},
            'color': '#dddddd',
        },
        {
            'name': 'total',
            'label': 'Total # responses',
            'data': totals_data,
            'yaxis': 1,
            'lines': {'show': True, 'fill': False},
            'points': {'show': True},
            'color': '#3E72BF',
        },
        {
            'name': 'updeltas',
            'label': 'Percent change in sentiment upwards',
            'data': up_deltas,
            'yaxis': 2,
            'bars': {'show': True, 'lineWidth': 3},
            'points': {'show': True},
            'color': '#55E744',
        },
        {
            'name': 'downdeltas',
            'label': 'Percent change in sentiment downwards',
            'data': down_deltas,
            'yaxis': 2,
            'bars': {'show': True, 'lineWidth': 3},
            'points': {'show': True},
            'color': '#E73E3E',
        }
    ]

    return histogram
Ejemplo n.º 14
0
def dashboard(request):
    template = 'analytics/dashboard.html'

    output_format = request.GET.get('format', None)
    page = smart_int(request.GET.get('page', 1), 1)

    # Note: If we add additional querystring fields, we need to add
    # them to generate_dashboard_url.
    search_happy = request.GET.get('happy', None)
    search_platform = request.GET.get('platform', None)
    search_locale = request.GET.get('locale', None)
    search_product = request.GET.get('product', None)
    search_version = request.GET.get('version', None)
    search_query = request.GET.get('q', None)
    search_date_start = smart_date(
        request.GET.get('date_start', None), fallback=None)
    search_date_end = smart_date(
        request.GET.get('date_end', None), fallback=None)
    search_bigram = request.GET.get('bigram', None)
    selected = request.GET.get('selected', None)

    filter_data = []
    current_search = {'page': page}

    search = ResponseMappingType.search()
    f = F()
    # If search happy is '0' or '1', set it to False or True, respectively.
    search_happy = {'0': False, '1': True}.get(search_happy, None)
    if search_happy in [False, True]:
        f &= F(happy=search_happy)
        current_search['happy'] = int(search_happy)

    def unknown_to_empty(text):
        """Convert "Unknown" to "" to support old links"""
        return u'' if text.lower() == u'unknown' else text

    if search_platform is not None:
        f &= F(platform=unknown_to_empty(search_platform))
        current_search['platform'] = search_platform
    if search_locale is not None:
        f &= F(locale=unknown_to_empty(search_locale))
        current_search['locale'] = search_locale

    visible_products = [
        prod.encode('utf-8')
        for prod in Product.objects.public().values_list('db_name', flat=True)
    ]

    # This covers the "unknown" product which is also visible.
    visible_products.append('')

    if search_product in visible_products:
        f &= F(product=unknown_to_empty(search_product))
        current_search['product'] = search_product

        if search_version is not None:
            # Note: We only filter on version if we're filtering on
            # product.
            f &= F(version=unknown_to_empty(search_version))
            current_search['version'] = search_version
    else:
        f &= F(product__in=visible_products)

    if search_date_start is None and search_date_end is None:
        selected = '7d'

    if search_date_end is None:
        search_date_end = date.today()
    if search_date_start is None:
        search_date_start = search_date_end - timedelta(days=7)

    # If the start and end dates are inverted, switch them into proper
    # chronoligcal order
    search_date_start, search_date_end = sorted(
        [search_date_start, search_date_end])

    # Restrict the frontpage dashboard to only show the last 6 months
    # of data
    six_months_ago = date.today() - timedelta(days=180)
    search_date_start = max(six_months_ago, search_date_start)
    search_date_end = max(search_date_start, search_date_end)

    current_search['date_end'] = search_date_end.strftime('%Y-%m-%d')
    f &= F(created__lte=search_date_end)

    current_search['date_start'] = search_date_start.strftime('%Y-%m-%d')
    f &= F(created__gte=search_date_start)

    if search_query:
        current_search['q'] = search_query
        search = search.query(description__sqs=search_query)

    if search_bigram is not None:
        f &= F(description_bigrams=search_bigram)
        filter_data.append({
            'display': _('Bigram'),
            'name': 'bigram',
            'options': [{
                'count': 'all',
                'name': search_bigram,
                'display': search_bigram,
                'value': search_bigram,
                'checked': True
            }]
        })

    search = search.filter(f).order_by('-created')

    # If the user asked for a feed, give him/her a feed!
    if output_format == 'atom':
        return generate_atom_feed(request, search)

    elif output_format == 'json':
        return generate_json_feed(request, search)

    # Search results and pagination
    if page < 1:
        page = 1
    page_count = 20
    start = page_count * (page - 1)
    end = start + page_count

    search_count = search.count()
    opinion_page = search[start:end]

    # Navigation facet data
    facets = search.facet(
        'happy', 'platform', 'locale', 'product', 'version',
        size=1000,
        filtered=bool(search._process_filters(f.filters)))

    # This loop does two things. First it maps 'T' -> True and 'F' ->
    # False.  This is probably something EU should be doing for
    # us. Second, it restructures the data into a more convenient
    # form.
    counts = {
        'happy': {},
        'platform': {},
        'locale': {},
        'product': {},
        'version': {}
    }

    happy_sad_filter = request.GET.get('happy', None)

    if happy_sad_filter:
        if happy_sad_filter == '1':
            counts['happy'] = {True: 0}
        elif happy_sad_filter == '0':
            counts['happy'] = {False: 0}

    if search_platform:
        counts['platform'] = {search_platform: 0}

    if search_locale:
        counts['locale'] = {search_locale: 0}

    if search_product:
        counts['product'] = {search_product: 0}

    if search_version:
        counts['version'] = {search_version: 0}

    for param, terms in facets.facet_counts().items():
        for term in terms:
            name = term['term']
            if name.upper() == 'T':
                name = True
            elif name.upper() == 'F':
                name = False

            counts[param][name] = term['count']

    def empty_to_unknown(text):
        return _('Unknown') if text == u'' else text

    filter_data.extend([
        counts_to_options(
            counts['happy'].items(),
            name='happy',
            display=_('Sentiment'),
            display_map={True: _('Happy'), False: _('Sad')},
            value_map={True: 1, False: 0},
            checked=search_happy),
        counts_to_options(
            counts['product'].items(),
            name='product',
            display=_('Product'),
            display_map=empty_to_unknown,
            checked=search_product)
    ])
    # Only show the version if we're showing a specific
    # product.
    if search_product:
        filter_data.append(
            counts_to_options(
                counts['version'].items(),
                name='version',
                display=_('Version'),
                display_map=empty_to_unknown,
                checked=search_version)
        )
    else:
        filter_data.append({
            'display': _('Version'),
            'note': _('Select product to see version breakdown')
        })

    filter_data.extend(
        [
            counts_to_options(
                counts['platform'].items(),
                name='platform',
                display=_('Platform'),
                display_map=empty_to_unknown,
                checked=search_platform),
            counts_to_options(
                counts['locale'].items(),
                name='locale',
                display=_('Locale'),
                checked=search_locale,
                display_map=locale_name),
        ]
    )

    # Histogram data
    happy_data = []
    sad_data = []

    happy_f = f & F(happy=True)
    sad_f = f & F(happy=False)
    histograms = search.facet_raw(
        happy={
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': search._process_filters(happy_f.filters)
        },
        sad={
            'date_histogram': {'interval': 'day', 'field': 'created'},
            'facet_filter': search._process_filters(sad_f.filters)
        },
    ).facet_counts()

    # p['time'] is number of milliseconds since the epoch. Which is
    # convenient, because that is what the front end wants.
    happy_data = dict((p['time'], p['count']) for p in histograms['happy'])
    sad_data = dict((p['time'], p['count']) for p in histograms['sad'])

    zero_fill(search_date_start, search_date_end, [happy_data, sad_data])
    histogram = [
        {'label': _('Happy'), 'name': 'happy',
         'data': sorted(happy_data.items())},
        {'label': _('Sad'), 'name': 'sad',
         'data': sorted(sad_data.items())},
    ]

    return render(request, template, {
        'opinions': opinion_page,
        'opinion_count': search_count,
        'filter_data': filter_data,
        'histogram': histogram,
        'page': page,
        'prev_page': page - 1 if start > 0 else None,
        'next_page': page + 1 if end < search_count else None,
        'current_search': current_search,
        'selected': selected,
        'atom_url': generate_dashboard_url(request),
    })
Ejemplo n.º 15
0
 def test_filter_bad_field_action(self):
     with self.assertRaises(InvalidFieldActionError):
         len(S(FakeDjangoMappingType).filter(F(tag__faux='awesome')))
Ejemplo n.º 16
0
def analytics_search(request):
    template = 'analytics/analyzer/search.html'

    output_format = request.GET.get('format', None)
    page = smart_int(request.GET.get('page', 1), 1)

    # Note: If we add additional querystring fields, we need to add
    # them to generate_dashboard_url.
    search_happy = request.GET.get('happy', None)
    search_has_email = request.GET.get('has_email', None)
    search_platform = request.GET.get('platform', None)
    search_locale = request.GET.get('locale', None)
    search_country = request.GET.get('country', None)
    search_product = request.GET.get('product', None)
    search_domain = request.GET.get('domain', None)
    search_api = smart_int(request.GET.get('api', None), fallback=None)
    search_version = request.GET.get('version', None)
    search_query = request.GET.get('q', None)
    search_date_start = smart_date(request.GET.get('date_start', None),
                                   fallback=None)
    search_date_end = smart_date(request.GET.get('date_end', None),
                                 fallback=None)
    search_bigram = request.GET.get('bigram', None)
    search_source = request.GET.get('source', None)
    search_campaign = request.GET.get('campaign', None)
    search_organic = request.GET.get('organic', None)
    selected = request.GET.get('selected', None)

    filter_data = []
    current_search = {'page': page}

    search = ResponseMappingType.search()
    f = F()
    # If search happy is '0' or '1', set it to False or True, respectively.
    search_happy = {'0': False, '1': True}.get(search_happy, None)
    if search_happy in [False, True]:
        f &= F(happy=search_happy)
        current_search['happy'] = int(search_happy)

    # If search has_email is '0' or '1', set it to False or True,
    # respectively.
    search_has_email = {'0': False, '1': True}.get(search_has_email, None)
    if search_has_email in [False, True]:
        f &= F(has_email=search_has_email)
        current_search['has_email'] = int(search_has_email)

    def unknown_to_empty(text):
        """Convert "Unknown" to "" to support old links"""
        return u'' if text.lower() == u'unknown' else text

    if search_platform is not None:
        f &= F(platform=unknown_to_empty(search_platform))
        current_search['platform'] = search_platform
    if search_locale is not None:
        f &= F(locale=unknown_to_empty(search_locale))
        current_search['locale'] = search_locale
    if search_product is not None:
        f &= F(product=unknown_to_empty(search_product))
        current_search['product'] = search_product

        # Only show the version if there's a product.
        if search_version is not None:
            # Note: We only filter on version if we're filtering on
            # product.
            f &= F(version=unknown_to_empty(search_version))
            current_search['version'] = search_version

        # Only show the country if the product is Firefox OS.
        if search_country is not None and search_product == 'Firefox OS':
            f &= F(country=unknown_to_empty(search_country))
            current_search['country'] = search_country
    if search_domain is not None:
        f &= F(url_domain=unknown_to_empty(search_domain))
        current_search['domain'] = search_domain
    if search_api is not None:
        f &= F(api=search_api)
        current_search['api'] = search_api

    if search_date_start is None and search_date_end is None:
        selected = '7d'

    if search_date_end is None:
        search_date_end = datetime.now()
    if search_date_start is None:
        search_date_start = search_date_end - timedelta(days=7)

    current_search['date_end'] = search_date_end.strftime('%Y-%m-%d')
    # Add one day, so that the search range includes the entire day.
    end = search_date_end + timedelta(days=1)
    # Note 'less than', not 'less than or equal', because of the added
    # day above.
    f &= F(created__lt=end)

    current_search['date_start'] = search_date_start.strftime('%Y-%m-%d')
    f &= F(created__gte=search_date_start)

    if search_query:
        current_search['q'] = search_query
        search = search.query(description__sqs=search_query)

    if search_bigram is not None:
        f &= F(description_bigrams=search_bigram)
        filter_data.append({
            'display':
            'Bigram',
            'name':
            'bigram',
            'options': [{
                'count': 'all',
                'name': search_bigram,
                'display': search_bigram,
                'value': search_bigram,
                'checked': True
            }]
        })

    if search_source is not None:
        f &= F(source=search_source)
        current_search['source'] = search_source
    if search_campaign is not None:
        f &= F(campaign=search_campaign)
        current_search['campaign'] = search_campaign
    search_organic = {'0': False, '1': True}.get(search_organic, None)
    if search_organic in [False, True]:
        f &= F(organic=search_organic)
        current_search['organic'] = int(search_organic)

    search = search.filter(f).order_by('-created')

    # If they're asking for a CSV export, then send them to the export
    # screen.
    if output_format == 'csv':
        return _analytics_search_export(request, search)

    # Search results and pagination
    if page < 1:
        page = 1
    page_count = 50
    start = page_count * (page - 1)
    end = start + page_count

    search_count = search.count()
    search_results = search.values_list('id')[start:end]
    opinion_page_ids = [mem[0][0] for mem in search_results]

    # We convert what we get back from ES to what's in the db so we
    # can get all the information.
    opinion_page = Response.objects.filter(id__in=opinion_page_ids)

    # Navigation facet data

    # This loop does two things. First it maps 'T' -> True and 'F' ->
    # False.  This is probably something EU should be doing for
    # us. Second, it restructures the data into a more convenient
    # form.
    counts = {
        'happy': {},
        'has_email': {},
        'platform': {},
        'locale': {},
        'country': {},
        'product': {},
        'version': {},
        'url_domain': {},
        'api': {},
        'source': {},
        'campaign': {},
        'organic': {},
    }
    facets = search.facet(*(counts.keys()),
                          size=1000,
                          filtered=bool(search._process_filters(f.filters)))

    for param, terms in facets.facet_counts().items():
        for term in terms:
            name = term['term']
            if name == 'T':
                name = True
            elif name == 'F':
                name = False

            counts[param][name] = term['count']

    def empty_to_unknown(text):
        return 'Unknown' if text == u'' else text

    filter_data.extend([
        counts_to_options(counts['happy'].items(),
                          name='happy',
                          display='Sentiment',
                          display_map={
                              True: 'Happy',
                              False: 'Sad'
                          },
                          value_map={
                              True: 1,
                              False: 0
                          },
                          checked=search_happy),
        counts_to_options(counts['has_email'].items(),
                          name='has_email',
                          display='Has email',
                          display_map={
                              True: 'Yes',
                              False: 'No'
                          },
                          value_map={
                              True: 1,
                              False: 0
                          },
                          checked=search_has_email),
        counts_to_options(counts['product'].items(),
                          name='product',
                          display='Product',
                          display_map=empty_to_unknown,
                          checked=search_product)
    ])
    # Only show the version if we're showing a specific
    # product.
    if search_product:
        filter_data.append(
            counts_to_options(counts['version'].items(),
                              name='version',
                              display='Version',
                              display_map=empty_to_unknown,
                              checked=search_version))
        # Only show the country if the product is Firefox OS.
        if search_product == 'Firefox OS':
            filter_data.append(
                counts_to_options(counts['country'].items(),
                                  name='country',
                                  display='Country',
                                  checked=search_country,
                                  display_map=country_name), )

    filter_data.extend([
        counts_to_options(counts['platform'].items(),
                          name='platform',
                          display='Platform',
                          display_map=empty_to_unknown,
                          checked=search_platform),
        counts_to_options(counts['locale'].items(),
                          name='locale',
                          display='Locale',
                          checked=search_locale,
                          display_map=locale_name),
        counts_to_options(counts['url_domain'].items(),
                          name='domain',
                          display='Domain',
                          checked=search_domain,
                          display_map=empty_to_unknown),
        counts_to_options(counts['api'].items(),
                          name='api',
                          display='API version',
                          checked=search_api,
                          display_map=empty_to_unknown),
        counts_to_options(counts['organic'].items(),
                          name='organic',
                          display='Organic',
                          display_map={
                              True: 'Yes',
                              False: 'No'
                          },
                          value_map={
                              True: 1,
                              False: 0
                          },
                          checked=search_organic),
        counts_to_options(counts['source'].items(),
                          name='source',
                          display='Source',
                          checked=search_source,
                          display_map=empty_to_unknown),
        counts_to_options(counts['campaign'].items(),
                          name='campaign',
                          display='Campaign',
                          checked=search_campaign,
                          display_map=empty_to_unknown),
    ])

    return render(
        request, template, {
            'opinions': opinion_page,
            'opinion_count': search_count,
            'filter_data': filter_data,
            'page': page,
            'prev_page': page - 1 if start > 0 else None,
            'next_page': page + 1 if end < search_count else None,
            'current_search': current_search,
            'selected': selected,
        })
Ejemplo n.º 17
0
 def test_filter_and(self):
     eq_(len(S(FakeDjangoMappingType).filter(tag='awesome', foo='bar')), 1)
     eq_(len(S(FakeDjangoMappingType).filter(tag='awesome').filter(foo='bar')), 1)
     eq_(len(S(FakeDjangoMappingType).filter(F(tag='awesome') & F(foo='bar'))), 1)