Ejemplo n.º 1
0
def test_multiprocessing_kwargs(simple_model):
    m = simple_model
    num_proc = 2
    elfi.set_client('multiprocessing', num_processes=num_proc)
    rej = elfi.Rejection(m['k1'])
    assert rej.client.num_cores == num_proc

    elfi.set_client('multiprocessing', processes=num_proc)
    rej = elfi.Rejection(m['k1'])
    assert rej.client.num_cores == num_proc
Ejemplo n.º 2
0
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)

seq_length = 44648284  # E3 length is 44648284
train_scaler_n_sim = 32
smc_n_samples = 100
smc_schedule = [17, 16]

logging.info(f"Seq length is set to {seq_length}")

num_cores = 0
timeout = time.time() + 600  # seconds

while num_cores == 0:
    elfi.set_client("ipyparallel",
                    profile="pbs")  # Assumes ipython profile named pbs
    c = elfi.client.get_client()
    num_cores = c.num_cores
    if time.time() > timeout:
        raise TimeoutError("Could not find any cores after 600 seconds")
    time.sleep(10)

logging.info(f"Ipyparallel client started with {num_cores} cores.")

with open("../output/priors.pkl", "rb") as f:  # Priors specified in priors.py
    priors = pickle.load(f)

with open("../data/e3_phased.pkl", "rb") as f:
    y_obs = np.atleast_2d(pickle.load(f))

# Set up elfi model
Ejemplo n.º 3
0
def main(base, output, number_processes):
    # generate null (should only execute once)
    use = 'BOLFI'
    #use = 'SINGLE'
    if use != 'SINGLE':
        click.secho('Generating null dataset', fg='yellow')
        subprocess.check_call(
            ["snakemake", "null", "--profile", "elfi_profile"])
        click.secho('Creating environments', fg='yellow')
        subprocess.check_call(
            ["snakemake", "--profile", "elfi_profile", "--create-envs-only"])
        click.secho('Starting BOLFI', fg='yellow')
    if base:
        global base_output
        base_output = base
    if output:
        global summary_output
        summary_output = output
    # setup priors
    elfi.set_client(multiprocessing.Client(num_processes=number_processes))
    model = elfi.ElfiModel(name='msprime')
    elfi.Prior('uniform', 0, 0.5, model=model, name='n1')
    elfi.Prior('uniform', 0, 0.5, model=model, name='n2')
    elfi.Prior('uniform', 0, 1, model=model, name='split_prop')
    elfi.Prior('uniform', 1, 1861, model=model, name='split_size')
    snake_sim = elfi.tools.external_operation(command,
                                              prepare_inputs=prepare_inputs,
                                              process_result=process_result,
                                              stdout=False)
    vec_snake = elfi.tools.vectorize(snake_sim)
    empirical = np.array([
        0,  # desert MSE
        0.291761,
        0.328705,
        0.335145,  # pi
        0.12985,
        0.156539,
        0.0921547,  # fst
        0.023,
        0.019
    ])  # admix
    snake_node = elfi.Simulator(vec_snake,
                                model['n1'],
                                model['n2'],
                                model['split_prop'],
                                model['split_size'],
                                observed=empirical,
                                name='snake_sim')
    snake_node.uses_meta = True
    distance = elfi.Distance('euclidean', snake_node, name='dist')
    if use == 'SINGLE':
        print(
            snake_sim(0.1,
                      0.1,
                      0.1,
                      100,
                      seed=2,
                      meta={
                          'model_name': 'test',
                          'batch_index': 1,
                          'submission_index': 2
                      }))
        return

    elif use == 'BOLFI':
        pool = elfi.ArrayPool(
            ['n1', 'n2', 'split_prop', 'split_size', 'snake_sim'],
            name='bolfi_pool')

        bolfi = elfi.BOLFI(distance,
                           batch_size=1,
                           initial_evidence=20,
                           update_interval=3,
                           bounds={
                               'n1': (0, 0.5),
                               'n2': (0, 0.5),
                               'split_prop': (0, 1),
                               'split_size': (1, 1861)
                           },
                           pool=pool)
        post = bolfi.fit(n_evidence=10, bar=False)
        click.secho('Saving results', fg='yellow')
        pool.save()
        post.save()
        click.secho('Done', fg='green')

        return
Ejemplo n.º 4
0
if __name__ == '__main__':
    fitting_steps = 200
    samples = 100000

    current_time = get_time()
    logger.debug('Started at {}'.format(current_time))

    args = process_inputs()

    prefix = args['p']

    with open('cog_categories_dict.pkl', 'rb') as a:
        cog_catergories_dict = pickle.load(a)

    elfi.set_client('multiprocessing')

    shell_command = create_shell_command(args)  #builds shell command

    m = elfi.ElfiModel(name='nfds')  #creates model
    nfds_simulator = create_model(shell_command, m,
                                  cog_catergories_dict)  #creates model

    # Set an arbitrary global seed to keep the randomly generated quantities the same
    seed = 1
    np.random.seed(seed)
    ######################################

    # rejection
    initial_evidence = 5
    rej = elfi.Rejection(nfds_simulator, batch_size=1)
# This file is drawing samples from the approximated posterior distribution by utilising BOLFI.

# Written by: Anttoni Ojanperä, Nitin Williams
# Based on code written by: Antti Karvanen

num_processes = 2
seed = 23112021
np.random.seed(seed)

# Loading observed summary statistics
mat_model = loadmat('WCnet_noisy_300s_MEG_simulatednetwork_sub1.mat')
observed_model = mat_model['wPLImags_vals']


# Set up multiprocessing
elfi.set_client(elfi.clients.multiprocessing.Client(num_processes=num_processes))


# Specifying prior distributions
wee = elfi.Prior('norm',20,5)
wei = elfi.Prior('norm',18,6)
wie = elfi.Prior('norm',18,6)
wii = elfi.Prior('norm',1,0.2)
be = elfi.Prior('norm',3,1)
bi = elfi.Prior('norm',5,1)
taue = elfi.Prior('norm',18.6,3.8)
taui = elfi.Prior('norm',15.1,4.7)
k = elfi.Prior('norm',1.5,0.5)
IH = elfi.Prior('norm',2.5,0.5)
psi_sigma = elfi.Prior('norm',0.15,0.05)
import elfi
import os
from datetime import datetime
import csv
import shutil
from subprocess import *
import multiprocessing

currentDT = datetime.now()
currentDT = currentDT.strftime("/%Y-%m-%d %H:%M:%S")
shutil.rmtree("results")
os.mkdir("results")
shutil.rmtree("prop")
os.mkdir("prop")

elfi.set_client('multiprocessing')
iter = multiprocessing.Value('i', 1)
global start
start = 800
global end
end = 850

global threshold
threshold = 0
#def readData1():
#    file = open("target_data.csv","r")
#    data = file.read()
#    print(data)


def readData():