Ejemplo n.º 1
0
print("-----------------以下为OSELM-KNN(本文)算法(10)---------------")
acc_rem = []  #初始化精度列表
for ii in range(10):
    #data.target = data.target + 1
    #stdsc = StandardScaler()
    #label_size = 0.5
    (train_data, iter_data,
     test_data) = elmUtils.splitDataWithIter(data.data, data.target,
                                             label_size, 0.3)
    iter_y = BvsbUtils.KNNClassifierResult(train_data[0], train_data[1],
                                           iter_data[0])
    bvsbc = BvsbClassifier(train_data[0],
                           train_data[1],
                           iter_data[0],
                           iter_y,
                           test_data[0],
                           test_data[1],
                           iterNum=0.1)
    bvsbc.createOSELM(n_hidden=1000, active_function="sigmoid")
    bvsbc.trainOSELMWithKNNButBvsb()
    print(f'OSELM-BVSB-KNN 正确率为{bvsbc.score(test_data[0], test_data[1])}')

    acc_temp = bvsbc.score(test_data[0], test_data[1])  #记录每次的精度
    acc_rem.append(acc_temp)  #将每次的精度存入列表
for i in acc_rem:
    print(f'{i*100:0.2f}', )  #打印每次精度
acc_mean = np.mean(acc_rem)  #求出平均精度
print("{:.2f}".format(acc_mean * 100))  #打印平均精度

print('---------------------以上为OSELM-BVSB-KNN(10次)算法----------------------'
Ejemplo n.º 2
0
    Y_train = train_data[1].copy()
    X_iter = iter_data[0].copy()
    len_iter = len(X_iter)
    i = 1
    while len(X_iter) > (len_iter / 2):
        nbr = BvsbUtils.KNNClassifier(X_train, Y_train)  # KNN
        # iter_y=nbr.predict(X_iter)
        pred = nbr.predict_proba(X_iter)
        iter_y = np.argmax(pred, axis=1)
        classMax = np.max(pred, axis=1)  # 获取未标记样本的最大隶属度
        sortIndex = np.argsort(classMax)  # 排序后的原下标
        iter_index = np.sort(sortIndex[-select_h:])
        sort_h_y = iter_y[iter_index]  # 返回原来数据置信度最大的h个数
        sort_h_data = X_iter[iter_index]
        len_curr_iter = len(sort_h_y)
        bvsbc = BvsbClassifier(X_train, Y_train, sort_h_data, sort_h_y, test_data[0], test_data[1], iterNum=0.1)
        bvsbc.createELM(n_hidden=hidden_nums, activation_func="tanh", alpha=1.0, random_state=0)
        _data_index = bvsbc.fitAndGetUpdateDataIndex(limit=int(0.2 * len_curr_iter))
        if len(_data_index) != 0:
            X_train = np.r_[bvsbc.X_train, sort_h_data[_data_index]]
            Y_train = np.r_[bvsbc.Y_train, sort_h_y[_data_index]]
            X_iter = np.delete(X_iter, iter_index[_data_index], axis=0)
        else:
            print("没有数据被加入训练集,训练结束")
            break
        print(f"第{ii} 次训练,第{i}次迭代: 正确率为:{bvsbc.score(test_data[0], test_data[1])}")
        i += 1
    acc_temp = bvsbc.score(test_data[0], test_data[1])  # 记录每次的精度
    acc_rem.append(acc_temp)  # 将每次的精度存入列表

print("***************ELM-BVSB-KNN加权算法(10次精度)********************")
Ejemplo n.º 3
0
from elm import BvsbClassifier, BvsbUtils
from sklearn import datasets
from elm import elmUtils
from sklearn.preprocessing import StandardScaler
import time

print("---------OSELM-BVSB-----------")
data = elmUtils.readDataFileToData("data/zoo.data", targetIndex=0)
print(f'数据集大小问{data.target.size}')
data.data = StandardScaler().fit_transform(data.data)
(train, iter, test) = elmUtils.splitDataWithIter(data.data, data.target, 0.05,
                                                 0.3)
print(f'训练集大小为{train[1].size}')
print(f'迭代训练集大小为{iter[1].size}')
print(f'测试集大小为{test[1].size}')

tic = time.perf_counter_ns()
bvsbc = BvsbClassifier(train[0],
                       train[1],
                       iter[0],
                       iter[1],
                       test[0],
                       test[1],
                       iterNum=0.1)
bvsbc.createOSELM(n_hidden=1000)
bvsbc.trainOSELMWithoutKNN()
toc = time.perf_counter_ns()

print(f'OSELM-BVSB-KNN 正确率为{bvsbc.score(test[0], test[1])}')
print(f'OSELM-BVSB-KNN 项目用时:{(toc - tic) / 1000 / 1000} ms')
Ejemplo n.º 4
0
#---------------------------数据集---------------------------------
print("-----------------以下为ELM--KNN(本文)算法(10次)---------------")
stdc = StandardScaler()
label_size = 0.05  #已标记样本比例,分别取0.05-0.1-0.2-0.3-0.4
acc_rem = []  #初始化精度列表
for ii in range(10):
    data.data = stdc.fit_transform(data.data / 16.0)
    (train_data, iter_data,
     test_data) = elmUtils.splitDataWithIter(data.data, data.target,
                                             label_size, 0.3)
    iter_y = BvsbUtils.KNNClassifierResult(train_data[0], train_data[1],
                                           iter_data[0])  # KNN
    bvsbc = BvsbClassifier(train_data[0],
                           train_data[1],
                           iter_data[0],
                           iter_y,
                           test_data[0],
                           test_data[1],
                           iterNum=0.1)
    bvsbc.createELM(n_hidden=1000,
                    activation_func="tanh",
                    alpha=1.0,
                    random_state=0)
    bvsbc.X_test = test_data[0]
    bvsbc.Y_test = test_data[1]
    bvsbc.trainELMWithKNNButBvsb()

    print("+++++++++++++++++++")
    print(bvsbc.score(test_data[0], test_data[1]))

    acc_temp = bvsbc.score(test_data[0], test_data[1])  #记录每次的精度
Ejemplo n.º 5
0
data = datasets.load_digits()
stdc = StandardScaler()  # 均值归一化
label_size = 0.3

data.data = stdc.fit_transform(data.data / 16.0)
train, iter, test = elmUtils.splitDataWithIter(data.data, data.target,
                                               label_size, 0.2)

Y_iter = BvsbUtils.KNNClassifierResult(train[0], train[1], iter[0])
print(Y_iter.size)

tic = time.perf_counter_ns()
bvsbc = BvsbClassifier(train[0],
                       train[1],
                       iter[0],
                       Y_iter,
                       test[0],
                       test[1],
                       iterNum=0.1)
bvsbc.createELM(n_hidden=1000,
                activation_func="sigmoid",
                alpha=1.0,
                random_state=0)
bvsbc.X_test = test[0]
bvsbc.Y_test = test[1]
bvsbc.trainELMWithKNNButBvsb()
toc = time.perf_counter_ns()

print(bvsbc.score(test[0], test[1]))
print("ELM-BVSB 项目用时:%d" % ((toc - tic) / 1000 / 1000))
Ejemplo n.º 6
0
label_size = 0.3  #已标记样本比例,分别取0.05-0.1-0.2-0.3-0.4
acc_rem = []  #初始化精度列表
for ii in range(10):  #循环次数
    print(f'数据集大小问{data.target.size}')
    data.data = StandardScaler().fit_transform(data.data)
    (train, iter, test) = elmUtils.splitDataWithIter(data.data, data.target,
                                                     0.2, 0.3)
    print(f'训练集大小为{train[1].size}')
    print(f'迭代训练集大小为{iter[1].size}')
    print(f'测试集大小为{test[1].size}')

    #tic = time.perf_counter_ns()
    bvsbc = BvsbClassifier(train[0],
                           train[1],
                           iter[0],
                           iter[1],
                           test[0],
                           test[1],
                           iterNum=0.1)
    bvsbc.createOSELM(n_hidden=1000)
    bvsbc.trainOSELMWithoutKNN()
    #toc = time.perf_counter_ns()

    print(f'OSELM-BVSB 正确率为{bvsbc.score(test[0], test[1])}')
    # print(f'OSELM-BVSB项目用时:{(toc - tic) / 1000 / 1000} ms')

    acc_temp = bvsbc.score(test[0], test[1])  #记录每次的精度
    acc_rem.append(acc_temp)  #将每次的精度存入列表
print("*****************************************************")
for i in acc_rem:
    print(f'{i*100:0.2f}', )  #打印每次精度
Ejemplo n.º 7
0
from sklearn.svm import SVC
from elm import BvsbClassifier, BvsbUtils
from elm import elmUtils

print("---------OSELM-BVSB-KNN-----------")
data = datasets.load_digits()
#data=elmUtils.readDataFileToData("data/zoo.data", targetIndex=0)
#data=elmUtils.readDataFileToData("./data/abalone.data", targetIndex=-1, transformIndex=[0])
stdc = StandardScaler()

#data.data, data.target = stdc.fit_transform(data.data) / 16.0, data.target
#data.data = BvsbUtils.dimensionReductionWithPCA(data.data, 0.95)
label_size = 0.05

(train_data, iter_data, test_data) = elmUtils.splitDataWithIter(data.data, data.target, label_size, 0.2)
iter_y = BvsbUtils.SVMClassifierResult(train_data[0], train_data[1], iter_data[0])

tic = time.perf_counter_ns()
bvsbc = BvsbClassifier(train_data[0], train_data[1], iter_data[0], iter_y, test_data[0], test_data[1],
                       iterNum=0.2)
bvsbc.createOSELM(n_hidden=1000,active_function="sigmoid")
bvsbc.trainOSELMWithBvsb()
toc = time.perf_counter_ns()

tdata=np.vstack((iter_data[0],test_data[0]))
ttarget=np.hstack((iter_data[1],test_data[1]))
print(ttarget.shape)
print(f'OSELM-BVSB-KNN 正确率为{bvsbc.score(tdata,ttarget)}')
print(f'OSELM-BVSB-KNN 正确率为{bvsbc.score(test_data[0],test_data[1])}')
print(f'OSELM-BVSB-KNN 项目用时:{(toc - tic) / 1000 / 1000} ms')
Ejemplo n.º 8
0
    #data = sklearn.datasets.fetch_covtype()
    #data = datasets.load_iris()
    #data = datasets.load_digits()
    #ata = datasets.load_wine()#############################################有问题,跑不了
    #data = datasets.load_breast_cancer()
    stdc=StandardScaler()

    #data.data,data.target=stdc.fit_transform(data.data)/16.0, data.target
    #data.data=BvsbUtils.dimensionReductionWithPCA(data.data,0.95)
    label_size=0.3

    (train_data, iter_data, test_data) = elmUtils.splitDataWithIter(data.data,data.target, label_size, 0.2)
    iter_y=BvsbUtils.KNNClassifierResult(train_data[0],train_data[1],iter_data[0])

    tic = time.perf_counter_ns()
    bvsbc = BvsbClassifier(train_data[0], train_data[1], iter_data[0], iter_y, test_data[0], test_data[1],
                           iterNum=0.1)
    bvsbc.createOSELM(n_hidden=1000)
    bvsbc.trainOSELMWithBvsb()

    toc = time.perf_counter_ns()
    acc_temp = bvsbc.score(test_data[0], test_data[1])  #记录每次的精度
    acc_rem.append(acc_temp)            #将每次的精度存入列表
    time_temp = (toc - tic) / 1000 / 1000   #记录每次的时间
    time_rem.append(time_temp)      #将每次的时间存入列表

    print(f'OSELM-BVSB-KNN 正确率为{bvsbc.score(test_data[0], test_data[1])}')
    print(f'OSELM-BVSB-KNN 项目用时:{(toc - tic) / 1000 / 1000} ms')


for i in acc_rem:
    print(f'每一次的精度:{i*100:0.2f}',)   #打印每次精度