Ejemplo n.º 1
0
    def team_elo_constant(self,Major_chongqing_major_Elo, k_score =16):
        dota_team_id=set(list(Major_chongqing_major_Elo.W_id)+list(Major_chongqing_major_Elo.L_id))
        n_teams = len(dota_team_id)
        mean_elo=1000
        current_elos = np.ones(shape=(n_teams))*mean_elo
        for row in Major_chongqing_major_Elo.itertuples():
            idx = row.Index
            w_id = row.W_team_id
            l_id = row.L_team_id
            # Get current elos
            w_elo_before = current_elos[w_id]
            l_elo_before = current_elos[l_id]
            # Update on game results
            w_elo_after, l_elo_after = elo.update_elo_constant_k(w_elo_before, l_elo_before, k_score)
            # Save updated elos
            Major_chongqing_major_Elo.at[idx, 'w_elo_before_game'] = w_elo_before
            Major_chongqing_major_Elo.at[idx, 'l_elo_before_game'] = l_elo_before
            Major_chongqing_major_Elo.at[idx, 'w_elo_after_game'] = w_elo_after
            Major_chongqing_major_Elo.at[idx, 'l_elo_after_game'] = l_elo_after
            current_elos[w_id] = w_elo_after
            current_elos[l_id] = l_elo_after

        Major_chongqing_major_Elo['win_team_elo']=Major_chongqing_major_Elo.w_elo_before_game
        Major_chongqing_major_Elo['Lose_team_elo']=Major_chongqing_major_Elo.l_elo_before_game
#        Major_chongqing_major_Elo['dire_team_id']= Major_chongqing_major_Elo.dire_team
#        Major_chongqing_major_Elo['radiant_team_id'] = Major_chongqing_major_Elo.radiant_team
        ## win_percent
        expected_list = []
        for row in Major_chongqing_major_Elo.itertuples():
            w_elo = row.w_elo_before_game
            l_elo = row.l_elo_before_game
            w_expected = elo.expected_result(w_elo, l_elo)
            expected_list.append(w_expected)
        Major_chongqing_major_Elo['win_predict'] = expected_list
        Major_chongqing_major_Elo['lose_predict'] = 1-Major_chongqing_major_Elo.win_predict
        result=[]
        for row in Major_chongqing_major_Elo.itertuples():
            if row.win_predict>0.5:
                result.append(1)
            else:
                result.append(0)
        Major_chongqing_major_Elo['result']=result
        return(Major_chongqing_major_Elo)
Ejemplo n.º 2
0
    def player_team_elo_constant(self, data_total_info,total_players_id,k_factor=16):
        dota_team_id=set(list(data_total_info.W_id)+list(data_total_info.L_id))
        dota_team_id=pd.DataFrame(list(dota_team_id))
        dota_team_id.index=dota_team_id[0]
        dota_team_id['team_id']=range(len(dota_team_id))
        
        W_team_id=[]
        L_team_id=[]
        mean_elo=1000.0
        n_players = len(total_players_id)
        n_teams = len(dota_team_id)
        current_elos_player = np.ones(shape=(n_players))*mean_elo
        current_elos_team = np.ones(shape=(n_teams))*mean_elo
        current_count = np.zeros(n_teams)

        for i in range(len(data_total_info)):
            W_team_id.append(dota_team_id['team_id'][data_total_info['W_id'][i]])
            L_team_id.append(dota_team_id['team_id'][data_total_info['L_id'][i]])
        data_total_info['W_team_id']=W_team_id
        data_total_info['L_team_id']=L_team_id
        for row in data_total_info.itertuples():

            idx = row.Index

            # player elo 
            w_account1=row.W_players_1
            l_account1=row.L_players_1

            w_account2=row.W_players_2
            l_account2=row.L_players_2

            w_account3=row.W_players_3
            l_account3=row.L_players_3

            w_account4=row.W_players_4
            l_account4=row.L_players_4

            w_account5=row.W_players_5
            l_account5=row.L_players_5



            # tier = row.tier
            # print(type(w_id))
            # Get current elos
            w_elo_before1 = current_elos_player[w_account1]
            w_elo_before2 = current_elos_player[w_account2]
            w_elo_before3 = current_elos_player[w_account3]
            w_elo_before4 = current_elos_player[w_account4]
            w_elo_before5 = current_elos_player[w_account5]
            #print(w_elo_before1)
            mean_w_elo_before = np.mean(
                [int(w_elo_before1),
                int(w_elo_before2),
                int(w_elo_before3),
                int(w_elo_before4),
                int(w_elo_before5)
                ])
            l_elo_before1 = current_elos_player[l_account1]
            l_elo_before2 = current_elos_player[l_account2]
            l_elo_before3 = current_elos_player[l_account3]
            l_elo_before4 = current_elos_player[l_account4]
            l_elo_before5 = current_elos_player[l_account5]
            mean_l_elo_before = np.mean([
                int(l_elo_before1),
                int(l_elo_before2),
                int(l_elo_before3),
                int(l_elo_before4),
                int(l_elo_before5)
            ])
            # Update on game results
            change_elo = elo.elo_score_constant(mean_w_elo_before,mean_l_elo_before,k_factor)
            #change_elo = elo_player.elo_score_duration_diff(mean_w_elo_before, mean_l_elo_before,duration)
            # Save updated elos
            data_total_info.at[idx,'win_team_elo_player'] = mean_w_elo_before
            data_total_info.at[idx,'Lose_team_elo_player'] = mean_l_elo_before

            mean_w_elo_after, mean_l_elo_after = elo.update_elo_constant_k(mean_w_elo_before, mean_l_elo_before,k_factor)

            w_elo_after1=w_elo_before1 + change_elo
            l_elo_after1=l_elo_before1 - change_elo 
            w_elo_after2=w_elo_before2 + change_elo
            l_elo_after2=l_elo_before2 - change_elo 
            w_elo_after3=w_elo_before3 + change_elo
            l_elo_after3=l_elo_before3 - change_elo 
            w_elo_after4=w_elo_before4 + change_elo
            l_elo_after4=l_elo_before4 - change_elo 
            w_elo_after5=w_elo_before5 + change_elo
            l_elo_after5=l_elo_before5 - change_elo

            current_elos_player[w_account1] = w_elo_after1
            current_elos_player[l_account1] = l_elo_after1
            current_elos_player[w_account2] = w_elo_after2
            current_elos_player[l_account2] = l_elo_after2
            current_elos_player[w_account3] = w_elo_after3
            current_elos_player[l_account3] = l_elo_after3
            current_elos_player[w_account4] = w_elo_after4
            current_elos_player[l_account4] = l_elo_after4
            current_elos_player[w_account5] = w_elo_after5
            current_elos_player[l_account5] = l_elo_after5

            # 如果新的战队之前没有出现过,通过选手的elo评分来给队伍定下基准分
            w_id = row.W_team_id
            l_id = row.L_team_id


            w_elo_before = current_elos_team[w_id]
            l_elo_before = current_elos_team[l_id]
            w_team_times = current_count[w_id]
            l_team_times = current_count[l_id]
            w_team_times, l_team_times = w_team_times+1 ,l_team_times+1   # 计算出战队到最新打了多少次比赛
            current_count[w_id] = w_team_times
            current_count[l_id] = l_team_times
            w_elo_after, l_elo_after = elo.update_elo_constant_k(w_elo_before, l_elo_before, k_factor)
            if current_elos_team[w_id] == mean_elo and current_count[w_id] == 1.0:
                current_elos_team[w_id] = mean_w_elo_after
                data_total_info.at[idx,'win_team_elo_team'] = mean_w_elo_before
            else:
                current_elos_team[w_id] = w_elo_after
                data_total_info.at[idx,'win_team_elo_team'] = w_elo_before

            if current_elos_team[l_id] == mean_elo and current_count[l_id] == 1.0:
                current_elos_team[l_id] = mean_l_elo_after
                data_total_info.at[idx,'Lose_team_elo_team'] = mean_l_elo_before

            else:
                current_elos_team[l_id] = l_elo_after
                data_total_info.at[idx,'Lose_team_elo_team'] = l_elo_before
        
        data_total_info['dire_team_id']= data_total_info.dire_team
        data_total_info['radiant_team_id'] = data_total_info.radiant_team
        ## win_percent
        expected_list = []
        for row in data_total_info.itertuples():
            w_elo = row.win_team_elo_team
            l_elo = row.Lose_team_elo_team
            w_expected = elo.expected_result(w_elo, l_elo)
            expected_list.append(w_expected)
        data_total_info['win_predict'] = expected_list
        data_total_info['lose_predict'] = 1-data_total_info.win_predict
        result=[]
        for row in data_total_info.itertuples():
            if row.win_predict>0.5:
                result.append(1)
            else:
                result.append(0)
        data_total_info['result']=result
        return(data_total_info)
    def player_team_elo_result(self, data_total_info, total_players_id, k_factor=16):
        dota_team_id = set(list(data_total_info.W_id) + list(data_total_info.L_id))
        dota_team_id = pd.DataFrame(list(dota_team_id))
        dota_team_id.index = dota_team_id[0]
        dota_team_id['team_id'] = range(len(dota_team_id))
        data_total_info['win_team_last_playes'] = data_total_info['W_account']
        data_total_info['lose_team_last_playes'] = data_total_info['L_account']
        W_team_id = []
        L_team_id = []
        mean_elo = 1000.0
        n_players = len(total_players_id)
        n_teams = len(dota_team_id)
        current_elos_player = np.ones(shape=(n_players)) * mean_elo
        current_elos_team = np.ones(shape=(n_teams)) * mean_elo
        current_elos_combine = np.ones(shape=(n_teams)) * mean_elo # 结合队伍ELO与队员ELO分数
        current_count = np.zeros(n_teams) #队伍比赛场次统计
        current_count_player = np.zeros(n_players) #队员比赛场次统计
        one_month_team_played = np.zeros(n_teams)
        team_playes_id = [[0]] * n_teams# 设置储存上一次比赛的队伍的队员,通过比较与下一次的队伍队员是否有变化来判断出最新的队伍更换队员的 时间
        current_team_playes_time = np.zeros(n_teams)
        for i in range(len(data_total_info)):
            W_team_id.append(dota_team_id['team_id'][data_total_info['W_id'][i]])
            L_team_id.append(dota_team_id['team_id'][data_total_info['L_id'][i]])
        data_total_info['W_team_id'] = W_team_id
        data_total_info['L_team_id'] = L_team_id
        for row in data_total_info.itertuples():

            idx = row.Index
            current = int(time.time())

            # player elo
            w_account1 = row.W_players_1
            l_account1 = row.L_players_1

            w_account2 = row.W_players_2
            l_account2 = row.L_players_2

            w_account3 = row.W_players_3
            l_account3 = row.L_players_3

            w_account4 = row.W_players_4
            l_account4 = row.L_players_4

            w_account5 = row.W_players_5
            l_account5 = row.L_players_5

            # tier = row.tier
            # print(type(w_id))
            # Get current elos
            w_elo_before1 = current_elos_player[w_account1]
            w_elo_before2 = current_elos_player[w_account2]
            w_elo_before3 = current_elos_player[w_account3]
            w_elo_before4 = current_elos_player[w_account4]
            w_elo_before5 = current_elos_player[w_account5]
            # print(w_elo_before1)
            mean_w_elo_before = np.mean(
                [int(w_elo_before1),
                 int(w_elo_before2),
                 int(w_elo_before3),
                 int(w_elo_before4),
                 int(w_elo_before5)
                 ])
            l_elo_before1 = current_elos_player[l_account1]
            l_elo_before2 = current_elos_player[l_account2]
            l_elo_before3 = current_elos_player[l_account3]
            l_elo_before4 = current_elos_player[l_account4]
            l_elo_before5 = current_elos_player[l_account5]
            mean_l_elo_before = np.mean([
                int(l_elo_before1),
                int(l_elo_before2),
                int(l_elo_before3),
                int(l_elo_before4),
                int(l_elo_before5)
            ])
            # Update on game results
            change_elo = elo.elo_score_constant(mean_w_elo_before, mean_l_elo_before, k_factor)
            # change_elo = elo_player.elo_score_duration_diff(mean_w_elo_before, mean_l_elo_before,duration)
            # Save updated elos
            data_total_info.at[idx, 'win_team_elo_player'] = mean_w_elo_before
            data_total_info.at[idx, 'Lose_team_elo_player'] = mean_l_elo_before

            mean_w_elo_after, mean_l_elo_after = elo.update_elo_constant_k(mean_w_elo_before, mean_l_elo_before,
                                                                           k_factor)

            w_elo_after1 = w_elo_before1 + change_elo
            l_elo_after1 = l_elo_before1 - change_elo
            w_elo_after2 = w_elo_before2 + change_elo
            l_elo_after2 = l_elo_before2 - change_elo
            w_elo_after3 = w_elo_before3 + change_elo
            l_elo_after3 = l_elo_before3 - change_elo
            w_elo_after4 = w_elo_before4 + change_elo
            l_elo_after4 = l_elo_before4 - change_elo
            w_elo_after5 = w_elo_before5 + change_elo
            l_elo_after5 = l_elo_before5 - change_elo

            current_elos_player[w_account1] = w_elo_after1
            current_elos_player[l_account1] = l_elo_after1
            current_elos_player[w_account2] = w_elo_after2
            current_elos_player[l_account2] = l_elo_after2
            current_elos_player[w_account3] = w_elo_after3
            current_elos_player[l_account3] = l_elo_after3
            current_elos_player[w_account4] = w_elo_after4
            current_elos_player[l_account4] = l_elo_after4
            current_elos_player[w_account5] = w_elo_after5
            current_elos_player[l_account5] = l_elo_after5

            # 如果新的战队之前没有出现过,通过选手的elo评分来给队伍定下基准分
            w_id = row.W_team_id
            l_id = row.L_team_id
            W_account = row.W_account
            L_account = row.L_account
            start_time = row.start_time
            w_elo_before = current_elos_team[w_id]
            l_elo_before = current_elos_team[l_id]
            w_team_times = current_count[w_id]
            l_team_times = current_count[l_id]
            '''
            计算出每个选手参加的比赛场次
            '''

            w_player_1_times = current_count_player[w_account1]
            w_player_2_times = current_count_player[w_account2]
            w_player_3_times = current_count_player[w_account3]
            w_player_4_times = current_count_player[w_account4]
            w_player_5_times = current_count_player[w_account5]
            l_player_1_times = current_count_player[l_account1]
            l_player_2_times = current_count_player[l_account2]
            l_player_3_times = current_count_player[l_account3]
            l_player_4_times = current_count_player[l_account4]
            l_player_5_times = current_count_player[l_account5]
            w_team_times, l_team_times = w_team_times + 1, l_team_times + 1  # 计算出战队到最新打了多少次比赛
            w_player_1_times, w_player_2_times, w_player_3_times, w_player_4_times, w_player_5_times = w_player_1_times+1,w_player_2_times+1, w_player_3_times+1, w_player_4_times+1, w_player_5_times+1
            l_player_1_times, l_player_2_times, l_player_3_times, l_player_4_times, l_player_5_times = l_player_1_times+1,l_player_2_times+1, l_player_3_times+1, l_player_4_times+1, l_player_5_times+1
            
            current_count_player[w_account1] = w_player_1_times
            current_count_player[w_account2] = w_player_2_times
            current_count_player[w_account3] = w_player_3_times
            current_count_player[w_account4] = w_player_4_times
            current_count_player[w_account5] = w_player_5_times
            current_count_player[l_account1] = l_player_1_times
            current_count_player[l_account2] = l_player_2_times
            current_count_player[l_account3] = l_player_3_times
            current_count_player[l_account4] = l_player_4_times
            current_count_player[l_account5] = l_player_5_times
            current_count[w_id] = w_team_times
            current_count[l_id] = l_team_times
            if len(set(team_playes_id[w_id]) - set(W_account)) != 0:
                team_playes_id[w_id] = W_account
                current_team_playes_time[w_id] = start_time
            else:
                pass

            if len(set(team_playes_id[l_id]) - set(L_account)) != 0:
                team_playes_id[l_id] = L_account
                current_team_playes_time[l_id] = start_time
            else:
                pass
            w_elo_after, l_elo_after = elo.update_elo_constant_k(w_elo_before, l_elo_before, k_factor)
            if start_time > (current - 2592000):
                one_month_team_played[w_id] = one_month_team_played[w_id] + 1
                one_month_team_played[l_id] = one_month_team_played[l_id] + 1
                data_total_info.at[idx, 'one_month_team_playerd_w_team'] = one_month_team_played[w_id]
                data_total_info.at[idx, 'one_month_team_playerd_l_team'] = one_month_team_played[l_id]

            else:
                pass

            if current_elos_team[w_id] == mean_elo and current_count[w_id] == 1.0:
                current_elos_team[w_id] = mean_w_elo_after
                data_total_info.at[idx, 'win_team_elo_team'] = mean_w_elo_before
            else:
                current_elos_team[w_id] = w_elo_after
                data_total_info.at[idx, 'win_team_elo_team'] = w_elo_before

            if current_elos_team[l_id] == mean_elo and current_count[l_id] == 1.0:
                current_elos_team[l_id] = mean_l_elo_after
                data_total_info.at[idx, 'Lose_team_elo_team'] = mean_l_elo_before

            else:
                current_elos_team[l_id] = l_elo_after
                data_total_info.at[idx, 'Lose_team_elo_team'] = l_elo_before
            ## 如果选手评分ELO与队伍评分ELO差距较大的时候 采用选手评分ELO
            if abs(mean_w_elo_after - w_elo_after)>=100:
                current_elos_combine[w_id] = mean_w_elo_after
            elif abs(mean_w_elo_after - w_elo_after) >50 and abs(mean_w_elo_after - w_elo_after) < 100:
                current_elos_combine[w_id] = 0.65* mean_w_elo_after + 0.35*w_elo_after
            elif abs(mean_w_elo_after- w_elo_after) >25 and abs(mean_w_elo_after- w_elo_after) < 50:
                current_elos_combine[w_id] = 0.35 * mean_w_elo_after + 0.65*w_elo_after
            else:
                current_elos_combine[w_id] = w_elo_after

            if abs(mean_l_elo_after - l_elo_after)>=100:
                current_elos_combine[l_id] = mean_w_elo_after
            elif abs(mean_l_elo_after - l_elo_after) >50 and abs(mean_l_elo_after - l_elo_after) < 100:
                current_elos_combine[l_id] = 0.65* mean_l_elo_after + 0.35*l_elo_after
            elif abs(mean_l_elo_after- l_elo_after) >25 and abs(mean_l_elo_after- l_elo_after) < 50:
                current_elos_combine[l_id] = 0.35 * mean_l_elo_after + 0.65*l_elo_after
            else:
                current_elos_combine[l_id] = l_elo_after

        data_total_info.at[idx, 'win_team_ELO_combine'] = current_elos_combine[w_id]
        data_total_info.at[idx, 'lose_team_ELO_combine'] = current_elos_combine[l_id]

        data_total_info.at[idx, 'win_team_last_playes'] = team_playes_id[w_id]
        data_total_info.at[idx, 'lose_team_last_playes'] = team_playes_id[l_id]
        data_total_info['dire_team_id'] = data_total_info.dire_team
        data_total_info['radiant_team_id'] = data_total_info.radiant_team
        ## win_percent
        expected_list_team = []
        expected_list_player =[]
        for row in data_total_info.itertuples():
            w_elo_team = row.win_team_elo_team
            l_elo_team = row.Lose_team_elo_team
            w_elo_player = row.win_team_elo_player
            l_elo_player = row.Lose_team_elo_player
            w_expected_team = elo.expected_result(w_elo_team, l_elo_team)
            w_expected_plyaer =elo.expected_result(w_elo_player, l_elo_player)
            expected_list_team.append(w_expected_team)
            expected_list_player.append(w_expected_plyaer)
        data_total_info['win_predict_team'] = expected_list_team
        data_total_info['win_predict_player'] = expected_list_player
        data_total_info['lose_predict_team'] = 1 - data_total_info.win_predict_team
        data_total_info['lose_predict_player'] = 1 - data_total_info.win_predict_player
        result_player = []
        result_team = []
        for row in data_total_info.itertuples():
            if row.win_predict_team > 0.5:
                result_team.append(1)
            else:
                result_team.append(0)
            if row.win_predict_player > 0.5:
                result_player.append(1)
            else:
                result_player.append(0)
        data_total_info['result_team'] = result_team
        data_total_info['result_player'] = result_player
        return (current_elos_combine, current_count, current_team_playes_time, one_month_team_played,current_elos_player,current_count_player)
Ejemplo n.º 4
0
    def team_elo_team_score(self,Major_chongqing_major_Elo,k_score_higher=16,k_score_lower=32,elo_score_standard=1100):
        dota_team_id=set(list(Major_chongqing_major_Elo.W_id)+list(Major_chongqing_major_Elo.L_id))
        n_teams = len(dota_team_id)
        mean_elo=1000
        current_elos = np.ones(shape=(n_teams))*mean_elo
        current_count = np.zeros(n_teams)
        last_start_time = np.zeros(shape=n_teams)
        last_win_before = np.zeros(shape=(n_teams))
        for row in Major_chongqing_major_Elo.itertuples():
            idx = row.Index
            w_id = row.W_team_id
            l_id = row.L_team_id
            start_time = row.start_time
            #current_time = row.current_time
            #recent_game =1 if start_time > (current_time - 5270400) else 0
            # print(type(w_id))
            # Get current elos
            w_elo_before = current_elos[w_id]
            l_elo_before = current_elos[l_id]
            w_team_times = current_count[w_id]
            l_team_times = current_count[l_id]
            w_team_last_start_time = last_start_time[w_id]
            l_team_last_start_time = last_start_time[l_id]
            # Update on game results
            w_elo_after, l_elo_after = elo.update_elo_team_score(w_elo_before, l_elo_before, k_score_higher, k_score_lower)
            w_team_times, l_team_times = w_team_times+1 ,l_team_times+1   # 计算出战队到最新打了多少次比赛
            w_team_last_start_time, l_team_last_start_time = start_time, start_time
            w_team_current, l_team_current = 1, 0
            # Save updated elos
            Major_chongqing_major_Elo.at[idx, 'w_elo_before_game'] = w_elo_before
            Major_chongqing_major_Elo.at[idx, 'l_elo_before_game'] = l_elo_before
            Major_chongqing_major_Elo.at[idx, 'w_elo_after_game'] = w_elo_after
            Major_chongqing_major_Elo.at[idx, 'l_elo_after_game'] = l_elo_after
            Major_chongqing_major_Elo.at[idx, 'w_team_times'] = w_team_times
            Major_chongqing_major_Elo.at[idx, 'l_team_times'] = l_team_times
            Major_chongqing_major_Elo.at[idx, 'w_team_last_start_time'] = last_start_time[w_id]
            Major_chongqing_major_Elo.at[idx, 'l_team_last_start_time'] = last_start_time[l_id]
            Major_chongqing_major_Elo.at[idx, 'w_team_before'] = last_win_before[w_id]
            Major_chongqing_major_Elo.at[idx, 'l_team_before'] = last_win_before[l_id]
            current_elos[w_id] = w_elo_after
            current_elos[l_id] = l_elo_after
            current_count[w_id] = w_team_times
            current_count[l_id] = l_team_times
            last_start_time[w_id] = w_team_last_start_time
            last_start_time[l_id] = l_team_last_start_time
            last_win_before[w_id] = w_team_current
            last_win_before[l_id] = l_team_current

        Major_chongqing_major_Elo['win_team_elo']=Major_chongqing_major_Elo.w_elo_before_game
        Major_chongqing_major_Elo['Lose_team_elo']=Major_chongqing_major_Elo.l_elo_before_game
        Major_chongqing_major_Elo['dire_team_id']= Major_chongqing_major_Elo.dire_team
        Major_chongqing_major_Elo['radiant_team_id'] = Major_chongqing_major_Elo.radiant_team
        ## win_percent
        expected_list = []
        for row in Major_chongqing_major_Elo.itertuples():
            w_elo = row.w_elo_before_game
            l_elo = row.l_elo_before_game
            w_expected = elo.expected_result(w_elo, l_elo)
            expected_list.append(w_expected)
        Major_chongqing_major_Elo['win_predict'] = expected_list
        Major_chongqing_major_Elo['lose_predict'] = 1-Major_chongqing_major_Elo.win_predict
        result=[]
        for row in Major_chongqing_major_Elo.itertuples():
            if row.win_predict>0.5:
                result.append(1)
            else:
                result.append(0)
        Major_chongqing_major_Elo['result']=result
        return(Major_chongqing_major_Elo)
    def player_elo_recent(self, data_total_info, total_players_id, k_score_recent1=16, k_score_recent2=32):
        mean_elo = 1000.0
        n_players = len(total_players_id)
        current_elos_player = np.ones(shape=(n_players)) * mean_elo
        for row in data_total_info.itertuples():
            idx = row.Index
            start_time = row.start_time
            current_time = row.current_time
            recent_game = 1 if start_time > (current_time - 5270400) else 0

            # player elo 
            w_account1 = row.W_players_1
            l_account1 = row.L_players_1

            w_account2 = row.W_players_2
            l_account2 = row.L_players_2

            w_account3 = row.W_players_3
            l_account3 = row.L_players_3

            w_account4 = row.W_players_4
            l_account4 = row.L_players_4

            w_account5 = row.W_players_5
            l_account5 = row.L_players_5

            # tier = row.tier
            # print(type(w_id))
            # Get current elos
            w_elo_before1 = current_elos_player[w_account1]
            w_elo_before2 = current_elos_player[w_account2]
            w_elo_before3 = current_elos_player[w_account3]
            w_elo_before4 = current_elos_player[w_account4]
            w_elo_before5 = current_elos_player[w_account5]
            # print(w_elo_before1)
            mean_w_elo_before = np.mean(
                [int(w_elo_before1),
                 int(w_elo_before2),
                 int(w_elo_before3),
                 int(w_elo_before4),
                 int(w_elo_before5)
                 ])
            l_elo_before1 = current_elos_player[l_account1]
            l_elo_before2 = current_elos_player[l_account2]
            l_elo_before3 = current_elos_player[l_account3]
            l_elo_before4 = current_elos_player[l_account4]
            l_elo_before5 = current_elos_player[l_account5]
            mean_l_elo_before = np.mean([
                int(l_elo_before1),
                int(l_elo_before2),
                int(l_elo_before3),
                int(l_elo_before4),
                int(l_elo_before5)
            ])
            # Update on game results
            change_elo = elo.elo_score_recent_game(mean_w_elo_before, mean_l_elo_before, recent_game, k_score_recent1,
                                                   k_score_recent2)
            # Save updated elos
            data_total_info.at[idx, "w_elo_before_game1"] = w_elo_before1
            data_total_info.at[idx, "l_elo_before_game1"] = l_elo_before1
            data_total_info.at[idx, "w_elo_after_game1"] = w_elo_before1 + change_elo
            data_total_info.at[idx, "l_elo_after_game1"] = l_elo_before1 - change_elo
            data_total_info.at[idx, "w_elo_before_game2"] = w_elo_before2
            data_total_info.at[idx, "l_elo_before_game2"] = l_elo_before2
            data_total_info.at[idx, "w_elo_after_game2"] = w_elo_before2 + change_elo
            data_total_info.at[idx, "w_elo_after_game2"] = l_elo_before2 - change_elo
            data_total_info.at[idx, "w_elo_before_game3"] = w_elo_before3
            data_total_info.at[idx, "l_elo_before_game3"] = l_elo_before3
            data_total_info.at[idx, "w_elo_after_game3"] = w_elo_before3 + change_elo
            data_total_info.at[idx, "l_elo_after_game3"] = l_elo_before3 - change_elo
            data_total_info.at[idx, "w_elo_before_game4"] = w_elo_before4
            data_total_info.at[idx, "l_elo_before_game4"] = l_elo_before4
            data_total_info.at[idx, "w_elo_after_game4"] = w_elo_before4 + change_elo
            data_total_info.at[idx, "l_elo_after_game4"] = l_elo_before4 - change_elo
            data_total_info.at[idx, "w_elo_before_game5"] = w_elo_before5
            data_total_info.at[idx, "l_elo_before_game5"] = l_elo_before5
            data_total_info.at[idx, "w_elo_after_game5"] = w_elo_before5 + change_elo
            data_total_info.at[idx, "l_elo_after_game5"] = l_elo_before5 - change_elo
            data_total_info.at[idx, 'win_team_elo_player'] = mean_w_elo_before
            data_total_info.at[idx, 'Lose_team_elo_player'] = mean_l_elo_before

            w_elo_after1 = w_elo_before1 + change_elo
            l_elo_after1 = l_elo_before1 - change_elo
            w_elo_after2 = w_elo_before2 + change_elo
            l_elo_after2 = l_elo_before2 - change_elo
            w_elo_after3 = w_elo_before3 + change_elo
            l_elo_after3 = l_elo_before3 - change_elo
            w_elo_after4 = w_elo_before4 + change_elo
            l_elo_after4 = l_elo_before4 - change_elo
            w_elo_after5 = w_elo_before5 + change_elo
            l_elo_after5 = l_elo_before5 - change_elo

            current_elos_player[w_account1] = w_elo_after1
            current_elos_player[l_account1] = l_elo_after1
            current_elos_player[w_account2] = w_elo_after2
            current_elos_player[l_account2] = l_elo_after2
            current_elos_player[w_account3] = w_elo_after3
            current_elos_player[l_account3] = l_elo_after3
            current_elos_player[w_account4] = w_elo_after4
            current_elos_player[l_account4] = l_elo_after4
            current_elos_player[w_account5] = w_elo_after5
            current_elos_player[l_account5] = l_elo_after5

            # 如果新的战队之前没有出现过,通过选手的elo评分来给队伍定下基准分
            # w_id = row.W_team_id
            # l_id = row.L_team_id

            # w_elo_before = current_elos_team[w_id]
            # l_elo_before = current_elos_team[l_id]
            # w_team_times = current_count[w_id]
            # l_team_times = current_count[l_id]
            # w_team_last_start_time = last_start_time[w_id]
            # l_team_last_start_time = last_start_time[l_id]
            # w_team_times, l_team_times = w_team_times+1 ,l_team_times+1   # 计算出战队到最新打了多少次比赛
            # current_count[w_id] = w_team_times
            # current_count[l_id] = l_team_times
            # w_elo_after, l_elo_after = self.update_elo(w_elo_before, l_elo_before)
            # if current_elos_team[w_id] == mean_elo and current_count[w_id] == 1.0:
            #    current_elos_team[w_id] = mean_w_elo_after
            #    data_total_info.at[idx,'win_team_elo_team'] = mean_w_elo_before
            # else:
            #    current_elos_team[w_id] = w_elo_after
            #    data_total_info.at[idx,'win_team_elo_team'] = w_elo_before

            # if current_elos_team[l_id] == mean_elo and current_count[l_id] == 1.0:
            #    current_elos_team[l_id] = mean_l_elo_after
            #    data_total_info.at[idx,'Lose_team_elo_team'] = mean_l_elo_before

            # else:
            #    current_elos_team[l_id] = l_elo_after
            #    data_total_info.at[idx,'Lose_team_elo_team'] = l_elo_before

        data_total_info['dire_team_id'] = data_total_info.dire_team
        data_total_info['radiant_team_id'] = data_total_info.radiant_team
        ## win_percent
        expected_list = []
        for row in data_total_info.itertuples():
            w_elo = row.win_team_elo_player
            l_elo = row.Lose_team_elo_player
            w_expected = elo.expected_result(w_elo, l_elo)
            expected_list.append(w_expected)
        data_total_info['win_predict'] = expected_list
        data_total_info['lose_predict'] = 1 - data_total_info.win_predict
        result = []
        for row in data_total_info.itertuples():
            if row.win_predict > 0.5:
                result.append(1)
            else:
                result.append(0)
        data_total_info['result'] = result
        return (data_total_info)