Ejemplo n.º 1
0
def get_flat_schema_view(annotation_type):
    Schema = get_flat_schema(annotation_type)
    ds = []
    for col, field in Schema._declared_fields.items():
        if isinstance(field, mm.fields.Nested):
            print(dir(field.schema), field.schema)
            schema = field.schema.__class__.__name__
        else:
            schema = ""

        ds.append(
            {
                "field_name": col,
                "description": field.metadata.get("description", ""),
                "type": type(field).__name__,
                "schema": schema,
            }
        )
    df = pd.DataFrame(ds)
    return render_template(
        "schema.html",
        df_table=df[["field_name", "type", "description", "schema"]].to_html(),
        schema_type=annotation_type,
        version=__version__,
    )
    def get_linked_annotations(self, table_name: str, pcg_table_name: str,
                               annotation_ids: List[int]) -> dict:
        """Get list of annotations from database by id.

        Parameters
        ----------
        table_name : str
            name of annotation table
        pcg_table_name: str
            name of chunked graph reference table
        annotation_ids : int
            annotation id

        Returns
        -------
        list
            list of annotation data dicts
        """

        schema_type = self.get_table_schema(table_name)

        seg_table_name = build_segmentation_table_name(table_name,
                                                       pcg_table_name)
        AnnotationModel = self._cached_table(table_name)
        SegmentationModel = self._cached_table(seg_table_name)

        annotations = (self.cached_session.query(
            AnnotationModel, SegmentationModel).join(
                SegmentationModel,
                SegmentationModel.id == AnnotationModel.id).filter(
                    AnnotationModel.id.in_([x for x in annotation_ids])).all())

        FlatSchema = get_flat_schema(schema_type)
        schema = FlatSchema(unknown=INCLUDE)

        data = []
        for anno, seg in annotations:
            anno_data = anno.__dict__
            seg_data = seg.__dict__
            anno_data = {
                k: v
                for (k, v) in anno_data.items() if k != "_sa_instance_state"
            }
            seg_data = {
                k: v
                for (k, v) in seg_data.items() if k != "_sa_instance_state"
            }
            anno_data["created"] = str(anno_data.get("created"))
            anno_data["deleted"] = str(anno_data.get("deleted"))

            merged_data = {**anno_data, **seg_data}
            data.append(merged_data)

        return schema.load(data, many=True)
Ejemplo n.º 3
0
def test_synapse_flatten():
    schema = SynapseSchema()
    result = schema.load(good_synapse)
    d = flatten_dict(result.data)
    print(d)
    assert (d['pre_pt_position'] == [31, 31, 0])

    result = schema.load(supervoxel_synapse)
    assert (d['pre_pt_position'] == [31, 31, 0])

    result = schema.load(supervoxel_rootId_synapse)
    assert (d['pre_pt_position'] == [31, 31, 0])

    FlatSynapseSchema = get_flat_schema('synapse')
    schema = FlatSynapseSchema()
    result = schema.load(d)
    assert (len(result.errors) == 0)
def test_synapse_flatten():
    schema = SynapseSchema()
    result = schema.load(good_synapse)
    d = flatten_dict(result)

    assert d["pre_pt_position"] == [31, 31, 0]

    result = schema.load(supervoxel_synapse)
    assert d["pre_pt_position"] == [31, 31, 0]

    result = schema.load(supervoxel_rootId_synapse)
    assert d["pre_pt_position"] == [31, 31, 0]

    FlatSynapseSchema = get_flat_schema("synapse")
    schema = FlatSynapseSchema()
    result = schema.load(d)

    assert len(result) == 8
Ejemplo n.º 5
0
def make_flat_model_from_schema(table_name: str,
                                schema: str,
                                segmentation_source: dict=None):
    
    if not annotation_models.contains_model(table_name, flat=True):
        
        flat_schema = get_flat_schema(schema)
        
        annotation_dict = create_table_dict(
            table_name=table_name,
            Schema=flat_schema,
            segmentation_source=segmentation_source,
            table_metadata=None,
            with_crud_columns=False,
        )
        FlatAnnotationModel = type(table_name, (FlatBase,), annotation_dict)   
        
        annotation_models.set_model(table_name,
                                    FlatAnnotationModel, flat=True)

    return annotation_models.get_model(table_name, flat=True)
Ejemplo n.º 6
0
def get_flat_schema_view(annotation_type):
    Schema = get_flat_schema(annotation_type)
    ds = []
    for col, field in Schema._declared_fields.items():
        if isinstance(field, mm.fields.Nested):
            print(dir(field.schema), field.schema)
            schema = field.schema.__class__.__name__
        else:
            schema = ''

        ds.append({
            'field_name': col,
            'description': field.metadata.get('description', ''),
            'type': type(field).__name__,
            'schema': schema
        })
    df = pd.DataFrame(ds)
    return render_template('schema.html',
        df_table=df[['field_name', 'type', 'description', 'schema']].to_html(),
        schema_type=annotation_type,
        version=__version__)
Ejemplo n.º 7
0
def test_flatten_all():
    types = get_types()
    for type_ in types:
        Schema = get_flat_schema(type_)
Ejemplo n.º 8
0
def test_bad_flatten():
    with pytest.raises(UnknownAnnotationTypeException):
        get_flat_schema('NOT A REAL TYPE')