def test_kmm(source, target): kmm_kernel = 'rbf' B = 1000 print('Kernel mean matching') # from kernel_mean_matching import eprimical_kmm as ekmm # coef_s,_ = ekmm(target, source, kern = kmm_kernel, B = B) from kernel_mean_matching import kernel_mean_matching as kmm coef_s = kmm(target, source, kern=kmm_kernel, B=B) tr = coef_s > 0.1 tr = tr.reshape(tr.shape[0], ) from embedders import embedding, variable_embedder n_components = 2 embedding_type = "no_embedding" embedder = embedding(embedding_type, n_cmp=n_components, n_ngb=10) if embedding_type == "autoencoder": split = 0.3 cut = np.floor(target.shape[0] * (1 - split)).astype(int) test_X = target[:cut, :] val_X = target[cut:, :] cut = np.floor(x_s.shape[0] * (1 - split)).astype(int) test_C = source[:cut, :] val_C = source[cut:, :] emb_c, emb_val_c, emb_x, emb_val_x = variable_embedder(embedder,\ [test_C, test_X],[val_C, val_X]) source = np.concatenate((emb_c, emb_val_c), axis=0) target = np.concatenate((emb_x, emb_val_x), axis=0) else: source, target, = variable_embedder(embedder, [source, target]) marker_size = 5 l1, = plt.plot(source[:, 0], source[:, 1], 'o', color='red', label='source') plt.setp(l1, markersize=marker_size) l2, = plt.plot(target[:, 0], target[:, 1], 'o', color='blue', label='target') plt.setp(l2, markersize=marker_size) marker_size = 2 l1, = plt.plot(source[:, 0], source[:, 1], 'o', color='red', label='source') plt.setp(l1, markersize=marker_size) marker_size = 1 l3, = plt.plot(source[tr, 0], source[tr, 1], 'o', color='k', label='ssbc') plt.setp(l3, markersize=marker_size) plt.show()
def eprimical_kmm_emb(target_samples, source_samples, kern='rbf', B=1, embedder_type='autoencoder', n_components=30): from embedders import embedding, variable_embedder embedder = embedding(embedder_type, n_cmp=n_components, n_ngb=10) if embedder_type != "autoencoder": X, C = variable_embedder(embedder, [target_samples, source_samples]) else: from autoencoder import autoencoder split = 0.3 cut = np.floor(target_samples.shape[0] * (1 - split)).astype(int) test_X = target_samples[:cut, :] val_X = target_samples[cut:, :] cut = np.floor(source_samples.shape[0] * (1 - split)).astype(int) test_C = source_samples[:cut, :] val_C = source_samples[cut:, :] test_X, val_X, test_C, val_C\ = variable_embedder(embedder,\ [test_X, test_C],[val_X, val_C]) X = np.concatenate((test_X, val_X), axis=0) C = np.concatenate((test_C, val_C), axis=0) # ============================================================================= # from embedders import variable_embedder # embeded_output = variable_embedder(embedder, (source_samples, target_samples)) # C = embeded_output[0] # X = embeded_output[1] # ============================================================================= if embedder_type == 'tsne' or embedder_type == "autoencoder": X = X.astype(np.double) C = C.astype(np.double) coef_s = kernel_mean_matching(X, C, kern=kern, B=B) coef_t = [] # coef_s, coef_t = eprimical_kmm(X, C , kern=kern, B=B) return coef_s, coef_t
def embedd(): ############################################################################## from embedders import embedding, variable_embedder n_components = 5 embedding_type = "spectral" embedder = embedding(embedding_type, n_cmp=n_components, n_ngb=30) ############################################################################## if embedding_type == "autoencoder": emb_train_x_s, emb_train_val_x_s, emb_train_x_t, emb_train_val_x_t\ = variable_embedder(embedder,\ [train_x_s, train_x_t],[val_x_s, val_x_t]) else: emb_train_x_s, emb_train_val_x_s, emb_train_x_t, emb_train_val_x_t\ = variable_embedder(embedder,\ [train_x_s, val_x_s, train_x_t, val_x_t]) # if embedding_type == "autoencoder": # emb_train_x_s, emb_train_val_x_s\ # = embedder.fit_transform(train_x_s, val_x_s) # else: # emb_train_x_s, emb_train_val_x_s\ # = variable_embedder(embedder, [train_x_s, val_x_s]) plt.scatter(emb_train_x_s[:, 0], emb_train_x_s[:, 1], c=cmap_s, label='source', marker="o", s=5) plt.show() plt.scatter(emb_train_x_t[:, 0], emb_train_x_t[:, 1], c=cmap_t, label='source', marker="o", s=5) plt.show()
import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.cm as cmx from load_data import load from kernel_mean_matching import eprimical_kmm_emb as ekmm_emb from kernel_mean_matching import kernel_mean_matching as kmm train_x_s, train_y_s, val_x_s, val_y_s, train_x_t, train_y_t, \ val_x_t, val_y_t, test_x_t, test_y_t = load(unlabele_target_percentage = 1) ############################################################################## from embedders import embedding, variable_embedder n_components = 2 embedding_type = "no_embedding" embedder = embedding(embedding_type, n_cmp=n_components, n_ngb=10) ############################################################################## if embedding_type == "autoencoder": train_x_s, val_x_s, train_x_t, val_x_t\ = variable_embedder(embedder,\ [train_x_s, train_x_t],[val_x_s, val_x_t]) test_x_t = embedder.predict(test_x_t) else: train_x_s, val_x_s, train_x_t, val_x_t, test_x_t \ = variable_embedder(embedder,[train_x_s, val_x_s, train_x_t, val_x_t, test_x_t]) ############################################################################## treshhold = 0.5 ############################################################################## ###### ssbc print('Kernel mean matching') # =============================================================================
print("Increazing the power level of the source floor with 50dB") train_x_s[train_x_s != 110] = train_x_s[train_x_s != 110] + 80 val_x_s[val_x_s != 110] = val_x_s[val_x_s != 110] + 80 #normalize the vectors of Xs and Ys def normalizer(X): mean_X = np.mean(X) std_X = np.sqrt(np.var(X)) X = (X-mean_X) / std_X return X from embedders import embedding embedding_type = "no_embedding" embedder = embedding(embedding_type) # ============================================================================= emb_x_s = embedder.fit_transform(train_x_s) emb_x_t = embedder.fit_transform(train_x_t) emb_val_x_s = embedder.fit_transform(val_x_s) emb_val_x_t = embedder.fit_transform(val_x_t) emb_test_x = embedder.fit_transform(test_x_t) # ============================================================================= num_inputs = emb_x_s.shape[1]# input layer size # ============================================================================= model_obj = my_models(num_inputs, dropout = dropout_pr) model = model_obj.build_model() model = model_obj.fit(emb_x_s, train_y_s, emb_val_x_s, val_y_s, scale = NN_scaling)
from plotters import plot_scatter_colored from plotters import plot_cmp from sklearn import preprocessing from keras.utils import plot_model from load_data import load train_x_s, train_y_s, val_x_s, val_y_s, train_x_t, train_y_t, \ val_x_t, val_y_t, test_x_t, test_y_t = load() load_data_flag = False from embedders import variable_embedder, embedding embedding_type = "pca" embedder = embedding(embedding_type, n_cmp = 519) train_x_s, val_x_s, train_x_t, val_x_t, test_x_t = variable_embedder(embedder,\ [train_x_s, val_x_s, train_x_t, val_x_t, test_x_t]) fine_tuning = True %run -i naive_learning.py fine_tuning = False %run -i naive_learning.py %run -i metric_learning_training.py %run -i sample_selection_bias_by_unlabeled_tranining.py %run -i transform_features.py %run -i transformed_sample_selection.py
def plot_embeding(x_s, x_t, coef_s, train_y_s=None, train_y_t=None, fig_name=None): import numpy as np treshhold = 0.9 # treshhold = np.mean(coef_s) coef_ind = coef_s > treshhold coef_ind = coef_ind.reshape(coef_ind.shape[0], ) from embedders import embedding, variable_embedder n_components = 2 embedding_type = "mds" embedder = embedding(embedding_type, n_cmp=n_components, n_ngb=10) if embedding_type == "autoencoder": split = 0.3 cut = np.floor(x_t.shape[0] * (1 - split)).astype(int) test_X = x_t[:cut, :] val_X = x_t[cut:, :] cut = np.floor(x_s.shape[0] * (1 - split)).astype(int) test_C = x_s[:cut, :] val_C = x_s[cut:, :] emb_c, emb_val_c, emb_x, emb_val_x = variable_embedder(embedder,\ [test_C, test_X],[val_C, val_X]) emb_train_x_s = np.concatenate((emb_c, emb_val_c), axis=0) emb_train_x_t = np.concatenate((emb_x, emb_val_x), axis=0) else: emb_train_x_s, emb_train_x_t, = variable_embedder(embedder, [x_s, x_t]) ############################################################################## import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") bg_color = 'white' fg_color = 'black' f = plt.figure(figsize=(10, 10), facecolor=bg_color, edgecolor=fg_color) if train_y_s is not None: cmap_s = cmap2d(train_y_s) cmap_t = cmap2d(train_y_t) else: cmap_s = 'b' cmap_t = 'k' l00 = plt.scatter(emb_train_x_s[:, 0], emb_train_x_s[:, 1], c=cmap_s, label='source', marker="o", s=3) l01 = plt.scatter(emb_train_x_t[:, 0], emb_train_x_t[:, 1], c=cmap_t, label='target', marker="^", s=3) l22 = plt.scatter(emb_train_x_s[coef_ind, 0], emb_train_x_s[coef_ind, 1], c='r', label='ssbc', s=0.5) if fig_name: plt.savefig(fig_name + ".svg", dpi=1200) else: plt.show()