Ejemplo n.º 1
0
def run_complex_embedding_network(lookup_table, max_sequence_length):

    embedding_dimension = lookup_table.shape[1]
    sequence_input = Input(shape=(max_sequence_length, ), dtype='int32')

    phase_embedding = phase_embedding_layer(
        max_sequence_length, lookup_table.shape[0])(sequence_input)

    amplitude_embedding = amplitude_embedding_layer(
        np.transpose(lookup_table), max_sequence_length,
        trainable=True)(sequence_input)

    [seq_embedding_real, seq_embedding_imag
     ] = ComplexMultiply()([phase_embedding, amplitude_embedding])

    [sentence_embedding_real, sentence_embedding_imag
     ] = ComplexAverage()([seq_embedding_real, seq_embedding_imag])

    output = Complex1DProjection(dimension=embedding_dimension)(
        [sentence_embedding_real, sentence_embedding_imag])

    model = Model(sequence_input, output)
    model.compile(loss='binary_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    return model
Ejemplo n.º 2
0
def createModel(
    dropout_rate=0.5,
    optimizer='adam',
    init_criterion="he",
    projection=True,
):
    #    projection= True,max_sequence_length=56,nb_classes=2,dropout_rate=0.5,embedding_trainable=True,random_init=False

    max_sequence_length = 56
    nb_classes = 2
    embedding_trainable = True
    # can be searched by grid
    random_init = False

    embedding_dimension = lookup_table.shape[1]
    sequence_input = Input(shape=(max_sequence_length, ), dtype='int32')

    phase_embedding = Dropout(dropout_rate)(phase_embedding_layer(
        max_sequence_length,
        lookup_table.shape[0],
        embedding_dimension,
        trainable=embedding_trainable)(sequence_input))

    amplitude_embedding = Dropout(dropout_rate)(amplitude_embedding_layer(
        np.transpose(lookup_table),
        max_sequence_length,
        trainable=embedding_trainable,
        random_init=random_init)(sequence_input))

    [seq_embedding_real, seq_embedding_imag
     ] = ComplexMultiply()([phase_embedding, amplitude_embedding])

    if (projection):
        [sentence_embedding_real, sentence_embedding_imag
         ] = ComplexMixture()([seq_embedding_real, seq_embedding_imag])
        sentence_embedding_real = Flatten()(sentence_embedding_real)
        sentence_embedding_imag = Flatten()(sentence_embedding_imag)

    else:
        [sentence_embedding_real, sentence_embedding_imag
         ] = ComplexSuperposition()([seq_embedding_real, seq_embedding_imag])

    # output = Complex1DProjection(dimension = embedding_dimension)([sentence_embedding_real, sentence_embedding_imag])
    predictions = ComplexDense(units=nb_classes,
                               init_criterion=init_criterion,
                               activation='sigmoid',
                               bias_initializer=Constant(value=-1))([
                                   sentence_embedding_real,
                                   sentence_embedding_imag
                               ])

    output = GetReal()(predictions)
    model = Model(sequence_input, output)
    model.compile(loss="binary_crossentropy",
                  optimizer=optimizer,
                  metrics=['accuracy'])

    return model
Ejemplo n.º 3
0
def run_complex_embedding_network_superposition(lookup_table,
                                                max_sequence_length,
                                                nb_classes=2,
                                                random_init=True,
                                                embedding_trainable=True):

    embedding_dimension = lookup_table.shape[1]
    sequence_input = Input(shape=(max_sequence_length, ), dtype='int32')

    phase_embedding = phase_embedding_layer(
        max_sequence_length,
        lookup_table.shape[0],
        embedding_dimension,
        trainable=embedding_trainable)(sequence_input)

    amplitude_embedding = amplitude_embedding_layer(
        np.transpose(lookup_table),
        max_sequence_length,
        trainable=embedding_trainable,
        random_init=random_init)(sequence_input)

    [seq_embedding_real, seq_embedding_imag
     ] = ComplexMultiply()([phase_embedding, amplitude_embedding])

    [sentence_embedding_real, sentence_embedding_imag
     ] = ComplexSuperposition()([seq_embedding_real, seq_embedding_imag])

    # output = Complex1DProjection(dimension = embedding_dimension)([sentence_embedding_real, sentence_embedding_imag])
    predictions = ComplexDense(units=nb_classes,
                               activation='sigmoid',
                               bias_initializer=Constant(value=-1))([
                                   sentence_embedding_real,
                                   sentence_embedding_imag
                               ])

    output = GetReal()(predictions)

    model = Model(sequence_input, output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='rmsprop',
                  metrics=['accuracy'])
    return model
Ejemplo n.º 4
0
def run_complex_embedding_network_mixture(lookup_table,
                                          max_sequence_length,
                                          nb_classes=2,
                                          random_init=True,
                                          embedding_trainable=True):

    embedding_dimension = lookup_table.shape[1]
    sequence_input = Input(shape=(max_sequence_length, ), dtype='int32')

    phase_embedding = phase_embedding_layer(
        max_sequence_length,
        lookup_table.shape[0],
        embedding_dimension,
        trainable=embedding_trainable)(sequence_input)

    amplitude_embedding = amplitude_embedding_layer(
        np.transpose(lookup_table),
        max_sequence_length,
        trainable=embedding_trainable,
        random_init=random_init)(sequence_input)

    [seq_embedding_real, seq_embedding_imag
     ] = ComplexMultiply()([phase_embedding, amplitude_embedding])

    [sentence_embedding_real, sentence_embedding_imag
     ] = ComplexMixture()([seq_embedding_real, seq_embedding_imag])

    sentence_embedding_real = Flatten()(sentence_embedding_real)
    sentence_embedding_imag = Flatten()(sentence_embedding_imag)
    # output = Complex1DProjection(dimension = embedding_dimension)([sentence_embedding_real, sentence_embedding_imag])
    predictions = ComplexDense(units=nb_classes,
                               activation='sigmoid',
                               bias_initializer=Constant(value=-1))([
                                   sentence_embedding_real,
                                   sentence_embedding_imag
                               ])

    output = GetReal()(predictions)

    model = Model(sequence_input, output)
    return model
Ejemplo n.º 5
0
def createModel(dropout_rate=0.5,
                optimizer='adam',
                learning_rate=0.1,
                init_criterion="he",
                projection=True,
                activation="relu"):
    #    projection= True,max_sequence_length=56,nb_classes=2,dropout_rate=0.5,embedding_trainable=True,random_init=False

    embedding_trainable = True
    # can be searched by grid
    random_init = False

    embedding_dimension = lookup_table.shape[1]
    sequence_input = Input(shape=(max_sequence_length, ), dtype='int32')

    phase_embedding = Dropout(dropout_rate)(phase_embedding_layer(
        max_sequence_length,
        lookup_table.shape[0],
        embedding_dimension,
        trainable=embedding_trainable)(sequence_input))

    amplitude_embedding = Dropout(dropout_rate)(amplitude_embedding_layer(
        np.transpose(lookup_table),
        max_sequence_length,
        trainable=embedding_trainable,
        random_init=random_init)(sequence_input))

    [seq_embedding_real, seq_embedding_imag
     ] = ComplexMultiply()([phase_embedding, amplitude_embedding])

    if (projection):
        [sentence_embedding_real, sentence_embedding_imag
         ] = ComplexMixture()([seq_embedding_real, seq_embedding_imag])
        sentence_embedding_real = Flatten()(sentence_embedding_real)
        sentence_embedding_imag = Flatten()(sentence_embedding_imag)

    else:
        [sentence_embedding_real, sentence_embedding_imag
         ] = ComplexSuperposition()([seq_embedding_real, seq_embedding_imag])

    # output = Complex1DProjection(dimension = embedding_dimension)([sentence_embedding_real, sentence_embedding_imag])
    predictions = ComplexDense(units=nb_classes,
                               init_criterion=init_criterion,
                               activation='sigmoid',
                               bias_initializer=Constant(value=-1))([
                                   sentence_embedding_real,
                                   sentence_embedding_imag
                               ])

    output = GetReal()(predictions)
    from keras import optimizers
    if optimizer == "Nadam":
        optimizer = optimizers.Nadam(lr=learning_rate, clipvalue=0.5)
    else:
        optimizer = optimizers.Adam(lr=learning_rate, clipvalue=0.5)


#    optimizer = optimizers.SGD(lr=learning_rate, momentum=momentum)
#    optimizer=Adadelta(lr=1.0, rho=0.95, epsilon=1e-09)
    model = Model(sequence_input, output)
    if nb_classes == 2:
        loss = "binary_crossentropy"
    else:
        loss = "categorical_crossentropy"
    model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])

    return model